рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Числовые характеристики функции случайного аргумента.

Числовые характеристики функции случайного аргумента. - раздел Математика, Основные понятия теории вероятностей. Случайное событие. Вероятность. Статистическая вероятность. Геометрическая вероятность. Основные формулы комбинаторики Рассмотрим Случайную Величину Y, Зависящую Функционально От Случайно...

Рассмотрим случайную величину Y, зависящую функционально от случайной величины X с известным законом распределения F(x): Y=φ(X).

Если Х – дискретная случайная величина и известен ее ряд распределения имеет вид:

Xi x1 x2 xn
pi p1 p2 pn

Определяем вероятности появления различных значений случайной величины У

φ(X)i φ(x1) φ(x2) φ(xn)
pi p1 p2 pn

Тогда математическое ожидание случайной величины Y определяется так:

(9.1)

Если случайная величина X непрерывна и имеет плотность распределения f(x), то заменяя в формуле (9.1) вероятности piэлементом вероятности f(x)dx, а сумму – интегралом, получаем:

. (9.2)

Для смешанной случайной величины выражение для математического ожидания преобразуется к виду:

(9.3)

Соотношения (9.1), (9.2) и (9.3) – общее понятие математического ожидания, позволяющее вычислить математическое ожидание для неслучайных функций случайного аргумента. Например, дисперсия случайной величины Y=φ(x) определяется так:

Величину M[φ(x)] рассчитываем в соответствии с (9.1)-(9.3). Для определения математического ожидания квадрата φ(х) воспользуемся следующими соотношениями:

. (9.4)

Таким образом, для нахождения числовых характеристик функции Y=φ(x) достаточно знать закон распределения ее аргумента.

18. Законы распределения функций случайных величин. Функция одного и двух случайных аргументов.

Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями.

Закон распределения прерывной случайной величины Х может быть задан в следующих формах:
• табличной;
• аналитической;
• графической.

Простейшей формой задания закона распределения прерывной случайной величины Х является таблица.

xi x1 x2 xn
pi p1 p2 pn

Такую таблицу называют рядом распределения случайной величины Х.

Чтобы придать ряду распределения более наглядный вид, часто прибегают к его графическому изображению.

Для непрерывной случайной величины такой характеристики построить нельзя!!!

Для непрерывной случайной величины удобно воспользоваться не вероятностью события Х=х, а вероятностью события Х<х, где х – некоторая текущая переменная. Вероятность этого события, очевидно, зависит от х и есть некоторая функция от х.


Эта функция называется функцией распределения случайной величины Х и обозначается F(х):
F(x) = P(X< x)

Функцию распределения F(x) называют также интегральной функцией распределения или интегральным законом распределения.

Функция распределения полностью характеризует случайную величину с вероятностной точки зрения, т.е. является одной из форм закона распределения.

Сформулируем некоторые общие свойства функции распределения:
1.F(x) – неубывающая функция своего аргумента т.е. при x2 > x1 F(x2) > F(x1);
2. F(–∞) = 0;
3. F(+∞) = 1.

Функция одного случайного аргумента.

Если каждому возможному значению случайной величины Х соответствует одно возможное значение случайной величины Y, то Y называют функцией случайного аргумента X: Y=φ(X).

Рассмотрим случай, когда X- дискретная случ величина с возможными значениями x1…xn, вероятности которых p1…pn. Тогда Yтоже является дискретной случ величиной со всевозможными случ событиями: y=f(x1)…y=f(xn).

Т.к. событие «величина X примет значение xi» влечет за собой событие «величина Y примет значение f(xi)», то вероятности всевозможных значений Y соответственно равны p1…pn.

Мат ожидание случ величины будет рассчитываться: M(y)=M(f(x))=∑f(xi)pi.

При записи закона распределения вероятности y руководствуются следующими правилами:

 

1.
Если различным возможным значениям X соответствуют различные возможные значения Y, то вероятности соответствующих значений X и Y равны между собой: P(X=xi)=P(y=f(xi))=pi.

2.
Если различным возможным значениям Х соответствуют значения Y, среди которых есть равные между собой, то следует складывать вероятности повторяющихся значений Y.


Рассмотрим непрерывную случ величину Х, которая задана своей плотностью, если у=f(x) дифференцируемая монотонная функция, обратная функция которой x=φ(y), то плотность распределения случ величины y определяется след функцией: g(y)=f[φ(y)|φ’(y)].

Соответствующее мат ожидание:

Если отыскание ф-ии g(y) является затрудненным, то можно исп. след формулу:

.

.
26. Функция двух случайных аргументов.

Если каждой паре возможных значений случ величин X и Y соответствует одно возможное значение случайной величины Z, то Z называют функцией двух случ аргументов X и Y: Z=φ(X, Y).

 

1.
Пусть X и Y – дискретные независимые случ величины. Для того, чтобы составить закон распределения функции Z=X+Y, надо найти все возможные значения Z и их вероятности. Т.к. X и Y независимые случ величины, то zi=xi+yi, pz=px*py. Если zi=zj, то их вероятности складываются.

2.
Пусть X и Y – непрерывные случ величины. Доказано: если X и Y независимы, то плотность распределения g(z) суммы Z=X+Y (при условии, что плотность хотя бы одного из аргументов задана на интервале(-∞;∞) одной формулой) может быть найдена с помощью формулы:


, где f1, f2 – плотности распределения аргументов.

Если возможные значения аргументов неотрицательны, то g(z) находят по формуле:

Плотность распределения суммы независимых случ величин называют композицией, а закон распределения вероятностей называют устойчивым, если композиция таких законов есть тот же закон. M(z)=M(x)+M(y); D(z)=D(x)+D(y).

 

19. Закон больших чисел.

Закон Больших Чисел 1 Пусть -- последовательность независимых с.в. и выполнено условие . Тогда

Эту теорему называют еще законом больших чисел в форме Чебышева.

Следствие 5.1 Пусть -- последовательность независимых одинаково распределенных с.в. с конечной дисперсией: . Обозначим . Тогда

или, более кратко, при .

В действительности, это утверждение верно в более общей ситуации, а именно, предположение о существовании дисперсии не является необходимым. Имеет место так называемый закон больших чисел в форме Хинчина.

– Конец работы –

Эта тема принадлежит разделу:

Основные понятия теории вероятностей. Случайное событие. Вероятность. Статистическая вероятность. Геометрическая вероятность. Основные формулы комбинаторики

Случайные события.. Случайные события бывают х видов.. Невозможные Обозначение V Достоверные Случайные..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Числовые характеристики функции случайного аргумента.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Определение вероятности события
Классическое определение вероятности события. При классическом определении вероятность события определяется равенством P(A)=m/n, где

Аксиомы вероятностей.
На основе вышеизложенного сформулированы аксиомы теории вероятностей. Пусть каждому событию ставится в соответствие число, называемое вероятно

Теорема сложения вероятностей
Теорема сложения вероятностей несовместных событий. Вероятность появления одного из двух несовместных событий, безразлично какого, равна сумме вероятностей этих событий: Р(

Повторение испытаний
Формула Бернулли  

Формула Бернулли
Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна p (0 < p < 1), событие наступит ровно m раз (безразлично,

Локальная и интегральная теорема Муавра-Лапласа
Локальная теорема.Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р (0 < р <1), событие наступит ровно

Ряд распределения дискретной случайной величины.
Наиболее простую форму можно придать закону распределения дискретной случайной величины. Рядом распределениядискретной случайной величины называется таблица, в которой перечислены в порядке

Смешанная случайная величина.
Случайная величина называется смешанной, если функция распределения F(x) на некоторых участках непрерывна, а в отдельных точках имеет разрывы (скачки). На тех учас

Плотность распределения системы случайных величин.
Двумерная величина (X,Y) является непрерывной, если ее функция распределения F(х,у) представляет собой непрерывную, дифференци

Условные законы распределения системы случайных величин.
Условные плотности для непрерывных составляющих X и Y определяются так f(x/y) = f(x, y)/fу

Регрессия
Пусть (Х, У) – 2-мерная СВ с известным законом распределения F(X,Y) или f(x,y). Условным математическим ожиданием компоненты Х называется математическое ожидание СВ Х, вычисленное при

Закон больших чисел Бернулли.
Пусть производится последовательность независимых испытаний, в результате каждого из которых может наступить или не наступить событие А, причем вероятность наступления этого события одна и т

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги