рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Закон больших чисел Бернулли.

Закон больших чисел Бернулли. - раздел Математика, Основные понятия теории вероятностей. Случайное событие. Вероятность. Статистическая вероятность. Геометрическая вероятность. Основные формулы комбинаторики Пусть Производится Последовательность Независимых Испытаний, В Результате Каж...

Пусть производится последовательность независимых испытаний, в результате каждого из которых может наступить или не наступить событие А, причем вероятность наступления этого события одна и та же при каждом испытании и равна р. Если событие А фактически произошло m раз в n испытаниях, то отношение m/n называют, как мы знаем, частотой появления события А. Частота есть случайная величина, причем вероятность того, что частота принимает значение m/n, выражается по формуле Бернулли (13):


Закон больших чисел в форме Бернулли состоит в следующем: с вероятностью, сколь угодно близкой к единице, можно утверждать, что при достаточно большом числе опытов частота появления события А как угодно мало отличается от его вероятности, т. е.

(55)


иными словами, при неограниченном увеличении числа n опытов частота m/n события А сходится по вероятности к Р(А).

 

 

20. Центральная предельная теорема.

Первый вариант этой теоремы был доказан в 1912 г. А.М.Ляпуновым. В настоящее время имеется несколько формулировок этой теоремы, различающихся условиями, которые накладываются на случайные величины. Мы приведём простейший вариант центральной предельной теоремы для одинаково распределённых независимых случайных величин.

Пусть последовательность одинаково распре­делённых случайных величин с математическими ожиданиями и дисперсиями .

ТЕОРЕМА. Если случайные величины независимы и , то при достаточно большом n закон распределения суммы будет сколь угодно близок к нормальному закону распределения .

Так как в условиях теоремы случайные величины независимы, то

т.е. в условиях теоремы сумма имеет закон распределения близкий к .Так' как na и с ростом п, возрастают, то удобнее рассматривать не просто суммы , а нормированные суммы . Такие суммы при имеют закон распределения .

17. Числовые характеристики функции случайного числа случайных слагаемых.

 

– Конец работы –

Эта тема принадлежит разделу:

Основные понятия теории вероятностей. Случайное событие. Вероятность. Статистическая вероятность. Геометрическая вероятность. Основные формулы комбинаторики

Случайные события.. Случайные события бывают х видов.. Невозможные Обозначение V Достоверные Случайные..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Закон больших чисел Бернулли.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Определение вероятности события
Классическое определение вероятности события. При классическом определении вероятность события определяется равенством P(A)=m/n, где

Аксиомы вероятностей.
На основе вышеизложенного сформулированы аксиомы теории вероятностей. Пусть каждому событию ставится в соответствие число, называемое вероятно

Теорема сложения вероятностей
Теорема сложения вероятностей несовместных событий. Вероятность появления одного из двух несовместных событий, безразлично какого, равна сумме вероятностей этих событий: Р(

Повторение испытаний
Формула Бернулли  

Формула Бернулли
Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна p (0 < p < 1), событие наступит ровно m раз (безразлично,

Локальная и интегральная теорема Муавра-Лапласа
Локальная теорема.Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р (0 < р <1), событие наступит ровно

Ряд распределения дискретной случайной величины.
Наиболее простую форму можно придать закону распределения дискретной случайной величины. Рядом распределениядискретной случайной величины называется таблица, в которой перечислены в порядке

Смешанная случайная величина.
Случайная величина называется смешанной, если функция распределения F(x) на некоторых участках непрерывна, а в отдельных точках имеет разрывы (скачки). На тех учас

Плотность распределения системы случайных величин.
Двумерная величина (X,Y) является непрерывной, если ее функция распределения F(х,у) представляет собой непрерывную, дифференци

Условные законы распределения системы случайных величин.
Условные плотности для непрерывных составляющих X и Y определяются так f(x/y) = f(x, y)/fу

Регрессия
Пусть (Х, У) – 2-мерная СВ с известным законом распределения F(X,Y) или f(x,y). Условным математическим ожиданием компоненты Х называется математическое ожидание СВ Х, вычисленное при

Числовые характеристики функции случайного аргумента.
Рассмотрим случайную величину Y, зависящую функционально от случайной величины X с известным законом распределения F(x): Y=φ(X).

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги