рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Классификация веществ по магнитным свойствам

Работа сделанна в 1999 году

Классификация веществ по магнитным свойствам - Курсовая Работа, раздел Физика, - 1999 год - Магнитомягкие материалы. Ферриты Классификация Веществ По Магнитным Свойствам. По Реакции На Внешнее Магнитное...

Классификация веществ по магнитным свойствам. По реакции на внешнее магнитное поле и характеру внутреннего магнитного упорядочения все вещества в природе можно подразделить на пять групп диамагнетики, парамагнетики, ферромагнетики, антиферромагнетики и ферримагнетики.

Перечисленным видам магнетиков соответствуют пять различных видов магнитного состояния вещества диамагнетизм, парамагнетизм, ферромагнетизм, антиферромагнетизм и ферримагнетизм. К диамагнетикам относят вещества, у которых магнитная восприимчивость отрицательна и не зависит от напряженности внешнего магнитного поля. К диамагнетикам относятся инертные газы, водород, азот, многие жидкости вода, нефть и ее производные, ряд металлов медь, серебро, золото, цинк, ртуть, галлий и др большинство полупроводников кремний, германий, соединения А3В5, А2В6 и органических соединений, щелочно-галоидные кристаллы, неорганические стекла и др. Диамагнетиками являются все вещества с ковалентной химической связью и вещества в сверхпроводящем состоянии.

К парамагнетикам относят вещества с положительной магнитной восприимчивостью, не зависящей от напряженности внешнего магнитного поля. К числу парамагнетиков относят кислород, окись азота, щелочные и щелочноземельные металлы, некоторые переходные металлы, соли железа, кобальта, никеля и редкоземельных элементов. К ферромагнетикам относят вещества с большой положительной магнитной восприимчивостью до 106 , которая сильно зависит от напряженности магнитного поля и температуры.

Антиферромагнетиками являются вещества, в которых ниже некоторой температуры спонтанно возникает антипараллельная ориентация элементарных магнитных моментов одинаковых атомов или ионов кристаллической решетки.

При нагревании антиферромагнетик испытывает фазовый переход в парамагнитное состояние. Антиферромагнетизм обнаружен у хрома, марганца и ряда редкоземельных элементов Ce, Nd, Sm, Tm и др Типичными антиферромагнетиками являются простейшие химические соединения на основе металлов переходной группы типа окислов, галогенидов, сульфидов, карбонатов и т.п. К ферримагнетикам относят вещества, магнитные свойства которых обусловлены нескомпенсированным антиферромагнетизмом.

Подобно ферромагнетикам они обладают высокой магнитной восприимчивостью, которая существенно зависит от напряженности магнитного поля и температуры. Наряду с этим ферримагнетики характеризуются и рядом существенных отличий от ферромагнитных материалов. Свойствами ферримагнетиков обладают некоторые упорядоченные металлические сплавы, но, главным образом различные оксидные соединения, среди которых наибольший практический интерес представляют ферриты. 1.2. Классификация магнитных материалов Применяемые в электронной технике магнитные материалы подразделяют на две основные группы магнитотвердые и магнитомягкие. В отдельную группу выделяют материалы специального назначения.

К магнитотвердым относят материалы с большой коэрцитивной силой Нс. Они перемагничиваются лишь в очень сильных магнитных полях и служат для изготовления постоянных магнитов.

К магнитомягким относят материалы с малой коэрцитивной силой и высокой магнитной проницаемостью. Они обладают способностью намагничиваться до насыщения в слабых магнитных полях, характеризуются узкой петлей гистерезиса и малыми потерями на перемагничивание. Магнитомягкие материалы используются в основном в качестве различных магнитопроводов сердечников дросселей, трансформаторов, электромагнитов, магнитных систем электроизмерительных приборов и т. п. Условно магнитомягкими считают материалы, у которых Нс 800 А м, а магнитотвердыми - с Нс 4 кА м. Необходимо, однако, отметить, что у лучших магнитомягких материалов коэрцитивная сила может составлять менее 1 А м, а лучших магнитотвердых материалах ее значение превышает 500 кА м. По масштабам применения в электронной технике среди материалов специального назначения следует выделить материалы с прямоугольной петлей гистерезиса ППГ , ферриты для устройств сверхвысокочастотного диапазона и магнитострикционные материалы.

Внутри каждой группы деление магнитных материалов по родам и видам отражает различия в их строении и химическом составе, учитывает технологические особенности и некоторые специфические свойства.

Рис.2 Классификация магнитных материалов Свойства магнитных материалов определяются формой кривой намагничивания и петли гистерезиса. Магнитомягкие материалы применяются для получения больших значений магнитного потока. Величина магнитного потока ограничена магнитным насыщением материала, а потому основным требованием к магнитным материалам сильноточной электротехники и электроники является высокая индукция насыщения.

Свойства магнитных материалов зависят от их химического состава, от чистоты используемого исходного сырья и технологии производства. В зависимости от исходного сырья и технологии производства магнитомягкие материалы делятся на три группы монолитные металлические материалы, порошковые металлические материалы магнитодиэлектрические и оксидные магнитные материалы, кратко называемые ферритами. 1.Монолитные металлические материалы.

Основными компонентами монолитных металлических магнитомягких материалов является железо с низким содержанием углерода, никель или кобальт. Для цепей техники связи важнейшими из этой группы материалов являются а сплавы и стали с гарантированной малой коэрцитивной силой б листовая сталь с гарантированными потерями при высоких значениях магнитной индукции в сплавы с гарантированной индукцией насыщения г сплавы и стали с гарантированной высокой проницаемостью д материалы со специальнымы свойствами.

Материалы первой подгруппы предназначены, например, для реле. К ним относятся сталь с минимальным содержанием углерода, низколегированная кремнистая сталь и сплавы железа с никелем. Вторую подгруппу материалов образует кремнистая сталь, применяемая для сердечников сетевых трансформаторов. Материалы третьей подгруппы включают в себя сплавы железа с кобальтом. Материалами с гарантированной проницаемостью являются низкоуглеродистые стали с присадкой 3-4,5 кремния и сплавы на основе никеля.

К подгруппе специальных материалов относятся материалы с прямоугольной петлей гистерезиса, магнитострикционные материалы и т.п. 2.Порошковые металлические материалы. Применение порошковых материалов, т.е. так называемых магнитодиэлектриков, основывается на технических и экономических соображениях. Магнитодиэлектрические сердечники имеют некоторые свойства, которых нельзя достичь у материалов первой группы.

Они пригодны для высокочастотной техники. Прокатка листовых материалов толщиной менее 0,05 мм обходится очень дорого, а при толщине 0,03 мм цена таких материалов превышает цену золота. Для уменьшения потерь на вихревые токи и увеличения стабильности магнитных свойств применяются порошковые магнитные материалы. Увеличение удельного электрического сопротивления достигается здесь изоляцией магнитных зерен друг от друга. Окончательная форма придается изделию прессованием.

К этой группе относятся а магнитодиэлектрические сердечники б материалы со специальными свойствами. В зависимости от исходного сырья магнитодиэлектрические сердечники делятся на сердечники из железных порошковых материалов и сердечники из легированного железа. Основу железных порошковых материалов составляет железо, получаемое обычно карбонильным способом. Легированные материалы представляют собой сплавы железа, и алюминия альсифер и сплавы железа и никеля или железа, никеля и молибдена пермаллой и молибденовый пермаллой. К специальным порошковым металлическим материалам относятся, например, магнитный порошок для магнитофоной ленты и других магнитных носителей информации. 3.Оксидные материалы - ферриты.

Ферриты представляют собой химические соединения, в общем случае имеющие формулу МFe2O4, где М - чаще всего двухвалентный ион металла, например, Cu, Zn, Mg, Ni, Fe, Co и Mn. В отличие от порошковых сердечников ферриты представляют собой монолитные материалы.

Магнитомягкие ферриты кристаллизуются в кубической системе и имеют структуру шпинели - минерала состава MgAl2O4. Чаще всего применяются ферриты следующих типов MnO ZnO x 2Fe2O3 - марганцево-цинковый феррит Nio ZnO x 2Fe2O3 - никель-цинковый феррит MgO MnO 2Fe2O3 - магний-марганцевый феррит. Ферриты имеют высокое удельное электрическое сопротивление порядка 10-109 Ом см и благодаря этому низкие потери на вихревые токи. Индукция насыщения составляет приблизительно 20-25 от индукции насыщения железа.

Ферриты делятся на три подгруппы а ферриты с гарантированными потерями и проницаемостью б ферриты с прямоугольной петлей гистерезиса в ферриты со специальными свойствами. Марганец-цинковые ферриты по сравнению с никель-цинковыми имеют меньшие потери. Оба эти вида ферритов относятся к первой подгруппе. Т.к. никель-цинковые ферриты имеют более высокое электрическое сопротивление, то их целесообразно применять в области частот от 500 кГц до 200 МГц и выше, т.е. для цепей высокочастотной техники.

Магний-цинковые ферриты предназначены для применения в диапазоне от звуковых частот до нескольких МГц. Ферриты с прямоугольной петлей гистерезиса бывают никель-цинковыми или магний-марганцевыми. В технике УКВ также применяются магний-марганцевые ферриты, однако соотношение отдельных составных частей в тройной системе отличается от состава магний-марганцевых ферритов с прямоугольной петлей гистерезиса. Эти ферриты вместе с магнитострикционными материалами относятся к группе материалов со специальными свойствами.

Благодаря своим свойствам, ферриты имеют очень широкий диапазон применения. В настоящее время ферриты применяются в производстве реле, сетевых трансформаторов устройств связи, дросселей, электромеханических преобразователей и резонаторов и т.п. Однако наибольшее распространение ферриты получили в производстве сердечников для катушек феррокатушек, запоминающих и переключающих цепей и т.п. 1.3.

– Конец работы –

Эта тема принадлежит разделу:

Магнитомягкие материалы. Ферриты

При увеличении дальности телефонной связи изучались возможности ограничения увеличивающегося затухания телефонных токов. В 1893г Хевисайд предложил использовать катушки с сердечниками из мелких… В период с 1893 по 1900 г были выяснены основные требования к магнитомягким материалам для техники связи малые потери,…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Классификация веществ по магнитным свойствам

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Особенности ферримагнетиков
Особенности ферримагнетиков. Строение ферримагнетиков. Ферримагнетики получили свое название от ферритов, под которыми понимают химические соединения окисла железа Fe2O3 с окислами других ме

Магнитомягкие материалы для постоянных и низкочастотных магнитных полей
Магнитомягкие материалы для постоянных и низкочастотных магнитных полей. Основные требования к материалам. Помимо высокой магнитной проницаемости и малой коэрцитивной силы магнитомягкие материалы д

Магнитомягкие высокочастотные материалы
Магнитомягкие высокочастотные материалы. Под высокочастотными магнитомягкими материалами понимают вещества, которые должны выполнять функции магнетиков при частотах свыше нескольких сотен или тысяч

Магнитные материалы специализированного назначения
Магнитные материалы специализированного назначения. Ферриты и металлические сплавы с ППГ. Магнитные материалы с прямоугольной петлей гистерезиса ППГ находят широкое применение в устройствах автомат

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги