рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

История открытия закона Кулона

Работа сделанна в 1998 году

История открытия закона Кулона - Курсовая Работа, раздел Физика, - 1998 год - Развитие оптики, электричества и магнетизма в XVIII веке История Открытия Закона Кулона. Основной Закон Электростатики - Закон Кулона ...

История открытия закона Кулона. Основной закон электростатики - закон Кулона - был установлен французским физиком Кулоном в 80-х гг. XVIII в. Однако история его открытия начинается раньше. Эта история показывает один из путей, по которому развивается физика путь применения аналогии, о котором мы упоминали выше. Мы видели, что Эпинус уже догадывался о том, что сила взаимодействия между электрическими зарядами обратно пропорциональна квадрату расстояния между ними. И эта догадка возникла на основе некоторой аналогии между силами тяготения и электрическими силами. Но аналогия не является доказательством.

Вывод из аналогии всегда требует проверки. Опираясь только на аналогию можно прийти и к неверным результатам.

Эпинус не проверил справедливость данной аналогии, и поэтому его высказывание имело только предположительный характер. Иначе поступил английский ученый Генри Кавендиш 1731 - 1810 . Он также исходил из аналогии между силами тягогения и силами электрического взаимодействия. Но он пошел дальше, нежели Эпинус, и проверил на опыте выводы, вытекающие из нее. Дадим представление об исследовании, выполненном Кавендишем. Было известно, что если взять полый шар с равномерно распределенной массой, т.е. с постоянной плотностью, то мила тяготения действующая внутри шара на какую-либо массу, будет равна нулю. Это следует из просых соображений.

Попытаемся их понять. Представим себе очень тонкий шаровой слой, образованный двумя очень близкими сферами, имеющими один и тот же центр. Пусть, например, радиус внешней сферы будет R, а толщина слоя d. Плотность материала, из которого состоит шаровой слой, r. Определим силу тяготения, действующую со стороны нашего слоя на материальную точку, помещенную внутри него в какой-то точке а. Для этой цели проведем через точку а и центр 0 прямую. Эта прямая пересечет внешнюю сферу в двух точках С и С . Построим теперь на поверхности сферы вокруг точки С очень маленький четырехугольник 1, настолько маленький, что его можно рассматривать как плоский квадрат.

Обозначим углы этого квадрата d1, d2, d3,d4. Пусть его площадь S, объем соответствующего элемента шарового слоя V. Проведем затем прямые линии через точку а и точки d1, d2, d3, d4. Эти прямые пересекут сферу вторично в точках d1 , d2 , d3 , d4 . Соединив эти точки, мы получим второй четырехугольник 2, который также можно будет рассматривать как плоский квадрат.

Пусть его площадь будет S , а соответствующий элемент объема шарового слоя будет V . Легко видеть, что сила тяготения, действующая на массу m, помещенную в точке a, со стороны элементов шарового слоя V и V , будет равна нулю. Действительно, массы этих элементов будут относиться как площади квадратов S и S . В свою очередь, площади квадратов S и S будут прямо пропорциональны квадратам их сторон, следовательно, прямо пропорциональны квадратам расстояний этих элементов до точки а - Са и С а. Таким образом, силы тяготения, действующие на массу со стороны элементов 1 и 2, будут прямо пропорциональны квадратам расстояний этих элементов до точки а. Но с другой стороны, эти силы по закону всемирного тяготения должны быть, наоборот, обратно пропорциональны квадратам расстояний этих элементов до точки а. Учитывая, что силы, действующие со стороны противоположных элементов, имеют противоположные направления, приходим к выводу, что сумма этих сил должна быть равна нулю. Отсюда сейчас же следует и общий вывод о равенстве нулю силы тяготения, действующей на массу, помещенную внутрь шарового слоя. Действительно, ведь мы можем весь шаровой слой разбить на маленькие элементы, подобные элементам 1. И для любого элемента всегда найдется другой элемент, действие которого на массу будет прямо противоположным.

В результате этого сила тяготения, действующая внутри шарового слоя на массу, будет равна нулю. Таков результат, к которому мы пришли.

Нужно только подчеркнуть, что этот результат справедлив для случая, когда сила обратно пропорциональна именно квадрату расстояния.

Если бы сила была пропорциональна расстоянию в другой степени, такого результата мы бы не получили. Полученный вывод мы можем сейчас же перенести на случай электрических сил. Представим себе опять тонкий шаровой слой, на поверхности которого равномерно распределен электрический заряд.

Поместим внутрь этого слоя другой заряд. Если сила взаимодействия между зарядами обратно пропорциональна квадратам расстояний между ними, то по аналогии с п сила, действующая на него со ст по шаровому слою, будет равна нулю. Если поместить внутрь слоя второй такой же заряд того же знака, то они будут отталкиваться друг от друга и двигаться в противоположные стороны. Кавендиш в 70-х гг. XVIII в. проделал такой опыт. Он взял заряженный металлический шар и поместил его внутрь полого металлического шара, образованного двумя полушариями.

Внешний полый шар сначала был не заряжен. 3атем внутренний шар тонкой проволокой соединялся с внешним шаром, для чего было сделано в последнем маленькое отверстие. Через некоторое время полушария разъединяли и освобождали внутренний шар. После этого соединяли его с электроскопом. Что показывал электроскоп? Если правильно предположение, что силы взаимодействия между зарядами в данном случае силы оттанкивания обратно пропорциональны квадрату расстояния между ними, то электроскоп покажет отсутствие заряда.

Действительно, как только внутренний шар соединяли проволокой с полушариями, так сейчас же электричество начинало перетекать с шара по проволоке на полушария, равномерно распределяясь на них. Ведь между зарядами, находящимися на таре, действовала сила отталкивания, но пока шар изолирован, заряды не могли его покинуть. Попав же на внешний шар, заряды равномерно распределялись на его поверхности, и их действие на заряд, находящийся внутри шара, прекращалось.

Перетекание зарядов с внутреннего шара на внешний будет происходить до тех пор, пока они все не покинут внутренний шар. Отсюда Кавендиш и сделал вывод о том, что силы взаимодействия между электрическими зарядами обратно пропорциональны квадрату расстояния между ними. Таким образом, мы должны сказать, что Кавендиш первым экспериментально установил закон взаимодействия электрических зарядов.

Однако он не обнародовал своего открытия. И эта работа оставалась при его жизни неизвестной. О ней узнали гораздо позже, только в середине прошлого столетия, после того как Максвелл опубликовал ее. Конечно, к этому времени она имела уже чисто исторический интерес. Не зная об исследованиях Кавендиша, французский ученымй Шарль Кунон 1736 - 1806 в 80-х гг. XVIII в. проделал ряд опытов и установил основной закон электростатики, получивший его имя. Кулон установил, во-первых, что сила взаимодействия между точечными зарядами обратно пропорциональна квадрату расстояния между ними. Эта сила будет силой отталкивания, если заряды одноименные, и силой притяжения, если заряды разноименные.

Во-вторых, Кулон ввел понятие количества электричества и определил, что сила взаимодействия между зарядами пропорциональна их величине. Кулон также экспериментально исследовал силы взаимодействия между магнитами. На основании данных эксперимента и полагая, что наряду с электрическими существуют и магнитные заряды, Кулон пришел к заключению, что силы взаимодействия между магнитными зарядами или магнитными массами также обратно пропорциональны квадрату расстояния между ними. В связи с этим закон Кулона для взаимодействия магнитов стали выражать как закон взаимодействия между магнитными массами m1 и m2 в виде формулы В последующем, уже в XIX в. выяснилось, что магнитных зарядов не существует. Но законом Кулона для магнитов продолжали пользоваться, хотя ему уже придавали иной смысл, нежели тот, который вкладывал в него Кулон.

– Конец работы –

Эта тема принадлежит разделу:

Развитие оптики, электричества и магнетизма в XVIII веке

Древние греки знали свойство натертого янтаря притягивать мелкие предметы. Само слово электричество происходит от греческого слова электрон , что значит… Название этого города послужило источником термина магнит . Древние не исследовали ни электрических, ни магнитных…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: История открытия закона Кулона

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Первые успехи в исследовании магнитных явлений в средние века
Первые успехи в исследовании магнитных явлений в средние века. В средние века изучение магнитных явлений приобретает практическое значение. Это происходит в связи с изобретением компаса. Уже

Развитие учения об электричестве в XVII и XVIII вв. до изобретения лейденской банки
Развитие учения об электричестве в XVII и XVIII вв. до изобретения лейденской банки. В своей книге Гильберт коснулся и электрических явлений. Нужно отметить, что хотя в то время магнетизм и электри

Изобретение лейденской банки и первые электрические приборы
Изобретение лейденской банки и первые электрические приборы. Очень важным шагом в развитии учения об электричестве было изобретение лейденской банки, т. е. электрического конденсатора. Лейде

Первые шаги в практическом применении учения об электрических явлениях
Первые шаги в практическом применении учения об электрических явлениях. Хотя учение об электрических явлениях начало играть существенную роль в практической жизни лишь начиная с середины XIX в тем

Первые теории электричества
Первые теории электричества. Вместе с ускорившимся развитием опытного исследования электрических явлений возникают и теории этих явлений. Конечно, еще до середины XVIII в. существовали некоторые со

Введение понятия потенциалав электростатику
Введение понятия потенциалав электростатику. Открытие закона Кулона было очень важным шагом в развитии учения об электричестве и магнетизме. Это был первый физический закон, выражающий колич

История изобретения гальванического элемента
История изобретения гальванического элемента. Важнейшим шагом вперед в развитии учения об электрических и магнитных явлениях было изобретение первого источника постоянного тока - гальванического эл

Открытие электромагнетизма
Открытие электромагнетизма. В XVIII в. электричество и магнетизм считались хотя и похожими, но все же имеющими различную природу явлениями. Правда, были известны некоторые факты, указывающие на сущ

Открытие электромагнитной индукции
Открытие электромагнитной индукции. Следующим важным шагом в развитии электродинамики после опытов Ампера было открытие явления электромагнитной индукции. Открыл явление электромагнитной индукции а

Начало развития электротехники
Начало развития электротехники. Вместе с развитием и успехами учения об электромагнитных явлениях появляется новая область техники - электротехника. Прежде всего возникает электрический телеграф. П

Первые шаги в развитии геометрической оптики
Первые шаги в развитии геометрической оптики. В оптике, так же как и в механике, первые шаги были сделаны уже в древности. Тогда были открыты два закона геометрической оптики закон прямолинейного р

Развитие взглядов на природу света и первые открытия в области физической оптики
Развитие взглядов на природу света и первые открытия в области физической оптики. Первые представления о том, что такое свет, относятся также к древности. В древности представления о природе

Оптика Ньютона
Оптика Ньютона. Еще в 60-е гг. XVII в. Ньютон заинтересовался оптикой и сделал открытие, которое, как казалось сначала, говорило в пользу корпускулярной теории света. Этим открытием было явление ди

Возрождение волновой теории света
Возрождение волновой теории света. Как мы сказали выше, после работ Ньютона среди ученых держалось твердое убеждение в справедливости корпускулярной теории света. Однако все же и в XVIII в. были уч

Исследования Френеля по интерференции и дифракции света
Исследования Френеля по интерференции и дифракции света. Французский инженер, ставший впоследствии знаменитым физиком, Огюстен Френепь 1788 - 1827 начал заниматься изучением явлений интерференции и

Борьба за признание волновой теории света
Борьба за признание волновой теории света. Френель не случайно в первых своих работах обошел вопрос о поляризации света. Ведь, рассматривая световые волны как волны в эфире, Френель считал их продо

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги