рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Геометрическая оптика

Работа сделанна в 2002 году

Геометрическая оптика - Курсовая Работа, раздел Физика, - 2002 год - Геометрическая Оптика Курсовая Работа Студента Физико-Математическо Факультет...

ГЕОМЕТРИЧЕСКАЯ ОПТИКА КУРСОВАЯ РАБОТА Студента Физико-математическо факультета группы ФМ-31 Мальцева С.А. преподаватель Повалишникова ВЛАДИМИР 2002 СОДЕРЖАНИЕ Часть 1. Исторические факты и основные законы геометрической оптики. -3 Часть 2. Построения 14 Оптика относится к таким наукам, первоначальные представления которых возникли в глубокой древности. На протяжении своей многовековой истории она испытывала непрерывное развитие и настоящее время является одной из фундаментальных физических наук, обогащаясь открытиями все новых явлений и законов.

Важнейшая проблема оптики — вопрос о природе света. Первые представления о природе света возникли в древние века. Античные мыслители пытались понять сущность световых явлений, базируясь на зрительных ощущениях. Древние индусы думали, что глаз имеет “огненную природу”. Греческий философ и математик Пифагор (582—500 гг. до н. э.) и его школа считали, что зрительные ощущения возникают благодаря тому, что из глаз к предметам исходят “горячие испарения”. В своем дальнейшем развитии эти взгляды приняли более четкую форму в виде теории зрительных лучей, которая была развита Евклидом (300 лет до н. э.). Согласно этой теории зрение обусловлено тем, что из глаз истекают “зрительные лучи”, которые ощупывают своими концами тела и создают зрительные ощущения. Евклид является основоположником учения о прямолинейном распространении света.

Применив к изучению света математику, он установил законы отражения света от зеркал.

Следует отметить, что для

Построения

до и. з.), который считал, что от светящихся тел направляются истечения к гл... э.), который считал, что причина зрительных ощущений лежит вне человеч... Влияние прогрессивных начал арабской науки, труды античных мыслителей ... Поэтому не удивительно, что это столетие особенно бедно по своим резул...

заключение о причинах дальнозоркости и близорукости как следствиях ненормального преломления света хрусталиком Мавролик дал правильное объяснение образованию изображений Солнца, наблюдаемых при прохождении солнечных лучей через малые отверстия.

Далее следует назвать итальянца Порта (1538—1615), который в 1589 г. изобрел камеру-обскуру — прообраз будущего фотоаппарата. Несколькими годами позже были изобретены основные оптические инструменты — микроскоп и зрительная труба. Изобретите микроскопа (1590) связывают с именем голландского мастера-оптика Захария Янсена. Зрительные трубы начали изготовлять примерно одновременно (1608—1610) голландские оптики Захарий Янсен, Яков Мециус и Ганс Липперсгей.

Изобретение этих оптических инструментов привело в последующие годы к крупнейшим открытиям в астрономии и биологии. Немецкому физику и астроному Н. Кеплеру (1571—1630) принадлежат фундаментальные работы по теории оптических инструментов и физиологической оптике, основателем которой он по праву может быть назван, Кеплер много работал над изучением преломления света. Большое значение для геометрической оптики имел принцип Ферма, названный так по имени сформулировавшего его французского ученого Пьера Ферма (1601—1665). Этот принцип устанавливал, что свет между двумя точками распространяется по такому пути, на прохождение которого затрачивает минимум времени.

Отсюда следует, что Ферма, в противоположность Декарту, считал скорость распространения света конечной. Знаменитый итальянский физик Галилей (1564—1642) не проводил систематических работ, посвященных исследованию световых явлений. Однако и в оптике ему принадлежат работы, принесшие науке замечательные плоды. Галилей усовершенствовал зрительную трубу и впервые применил ее к астрономии, в которой он сделал выдающиеся открытия, способствовавшие обоснованию новейших воззрений на строение Вселенной, базировавшихся на гелиоцентрической системе Коперника.

Галилею удалось создать зрительную трубу с увеличением, рамным 30, что во много раз превосходило увеличение зрительных труб первых ее изобретателей. С ее помощью он обнаружил горы и кратеры на поверхности Луны, открыл спутники у планеты Юпитер, обнаружил звездную структуру Млечного Пути и т. д. Галилей пытался измерить скорость света в земных условиях, но не достиг успеха ввиду слабости экспериментальных средств, имевшихся для этой цели. Отсюда следует, что Галилей уже имел правильные представления о конечной скорости распространения света. Галилей наблюдал также солнечные пятна.

Приоритет открытия солнечных пятен Галилеем оспаривал ученый-иезуит Патер Шейнер (1575—1650), которым провел точные наблюдения солнечных пятен и солнечных факелов с помощью зрительной трубы, устроенной по схеме Кеплера.

Замечательным в работах Шейнера является то, что ом превратил зрительную трубу в проекционный прибор, выдвигая окуляр больше, чем ун> было нужно для ясного видения глазом, это давало возможность получить изображение Солнца на экране и демонстрировать ого при различной степени увеличения нескольким лицам одновременно. Наиболее замечательным достижением этого периода было открытие дифракции света Гримальди (1618—1663). Им было найдено, что свет, проходя через узкие отверстия или около краев непрозрачных экранов, испытывает уклонения от прямолинейного распространения.

Видоизменяя опыты по наблюдению дифракции, он осуществил прямой опыт сложения двух световых пучков, которые исходили из двух отверстий в экране, освещенном Солнцем. При этом Гримальди наблюдал чередование светлых и темных полос. Таким образом, оказалось, что при сложении световых пучков в ряде мест получается не усиление, а ослабление света.

Впоследствии это явление было названо интерференцией. Гримальди высказал догадку, что вышеуказанные явления можно объяснить, если предположить, что свет представляет собой волнообразное движение. В вопросе о цветах тел он также высказывает правильную мысль, утверждая, что цвета есть составные части белого света. Происхождение цветов различных тел он объясняет способностью тел отражать падающий на них свет с особыми видоизменениями. Рассуждая о цветах вообще, он высказывает предположение, что различие цветов обусловлено различием в частотах световых колебаний (по терминологии Гримальди, различием в скорости колебаний светового вещества). Однако Гримальди не разработал какого-либо последовательного воззрения на природу света.

Мы видим, таким образом, что вопрос о природе света встал во весь рост, как только экспериментальные открытия подготовили для этого почву. В последующий период были сделаны фундаментальные теоретические и экспериментальные исследования, позволившие сделать первые научно обоснованные заключения о природе световых процессов.

При этом с особой силой проявилась тенденция дать объяснение световых явлений с двух противоположных точек зрения: с точки зрения представления о свете как корпускулярном явлении и с точки зрения волновой природы света. Эта борьба двух воззрений, отражавших прерывные и непрерывные свойства объективных явлений природы, естественным образом отражала диалектическую сущность материи и ее движения, как единства противоположностей.

XVII столетие характеризуется дальнейшим прогрессом в различных областях науки, техники и производства. Значительное развитие получает математика. В различных странах Европы создаются научные общества и академии, объединяющие ученых. Благодаря этому наука становится достоянием более широких кругов, что способствует установлению международных связей в науке. Во второй половине XVII столетия окончательно победил экспериментальный метод изучения явлений природы.

Крупнейшие открытия этого периода связаны с именем гениального английского физика и математика Исаака Ньютона /(1643— 1727). Наиболее важным экспериментальным открытием Ньютона в оптике является дисперсия света в призме (1666). Исследуя прохождение пучка белого света через трехгранную призму, Ньютон установил, что луч белого света распадается на бесконечную совокупность цветных лучей, образующих непрерывный спектр. Из этих опытов был сделан вывод о том, что белый свет представляет собой сложное излучение.

Ньютон произвел и обратный опыт, собрав с помощью линзы цветные лучи, образовавшиеся после прохождения через призму луча белого света. В результате он опять получил белый свет. Наконец, Ньютон провел опыт смешения цветов с помощью вращающегося круга, разделенного на несколько секторов, окрашенных в основные цвета спектра. При быстром вращении диска все цвета сливались в один, создавая впечатление белого цвета. Результаты этих фундаментальных опытов Ньютон положил в основу теории цветов, которая до этого не удавалась никому из его предшественников.

Согласно теории цветов цвет тела определяется теми лучами спектра, которые это тело отражает; другие же лучи тело поглощает. Наряду с этими открытиями Ньютону принадлежат работы по дифракции и интерференции света. Он осуществил замечательный опыт, приведший к открытию закономерной интерференционной картины, получившей название кольца Ньютона, и позволивший установить количественные соотношения в явлениях интерференции.

Для объяснения световых явлений Ньютон принимал, что свет представляет собой вещество, испускаемое в виде необычайно мелких частиц светящимися телами. Таким образом, Ньютон является создателем корпускулярной теории света, которую он назвал теорией истечения. Ньютон считал, что световые частицы имеют различные размеры: частицы, соответствующие красному участку спектра, крупнее, частицы, соответствующие фиолетовым лучам, — мельче. Между этими крайними случаями лежат промежуточные размеры, что и обусловливает непрерывный спектр цветов.

Теория истечения, кроме цветов спектра, хорошо объясняла прямолинейное распространение света. Однако она встретилась с очень большими трудностями при объяснении явлений отражения и преломления, дифракции и интерференции. Для согласования теории истечения с этими фактами Ньютону пришлось, прибегнуть к различным добавочным гипотезам, которые были слабо обоснованы. X. Гюйгенсу принадлежит открытие принципа, носящего, до сих пор его имя, который позволял проводить детальный кинематический анализ волнового движения и устанавливать различные закономерности в этой области.

На основе сформулированного принципа Гюйгенс объяснил законы отражения и преломления. Ему даже удалось объяснить двойное преломление света, возникающее в кристаллах. Это явление было открыто датским ученым Эразмом Бартолином (1625—1698) в 1669 г. и вызвало большой интерес среди ученых. Изучая двойное лучепреломление, Гюйгенс открыл поляризацию света в кристаллах, но объяснить это явление не смог. Подобно Р. Гуку, Гюйгенс считал, что свет в виде волн распространяется в эфире — тончайшей материи, разлитой по всему мировому пространству.

Но световые волны Гюйгенс считал продольными и поэтому ему не удалось объяснить явления поляризации; он не смог также дать теорию цветов и объяснить прямолинейное распространение света. Все эти недостатки волновой теории света Гюйгенса способствовали тому, что она была не в состоянии противостоять теории истечения Ньютона, вследствие чего последняя господствовала все XVIII и начало XIX столетия.

Против теории истечения выступал выдающийся математик Леонард Эйлер (1707—1783), который большую часть жизни работал в Российской Академии наук в Петербурге. Последовательным сторонником волновой теории света был гениальный русский ученый Михаил Василъевич Ломоносов (1711—1765), считавший, что свет представляет собой колебательное движение эфира. Однако даже этим знаменитым ученым не удалось поколебать господства теории истечения.

Из других крупных открытий и области оптики в XVII и XVIII столетиях следует назвать измерение скорости света (1675) датским астрономом Олафом Ремером (1693-1792) из наблюдений над затмениями спутников Юпитера. Перечисленные выше открытия и изобретения явились лишь наиболее важными моментами в развитии волновой теории света. Множество других исследований следовали одно за другим, и в целом всю их совокупность можно рассматривать как триумф волновой теории света. Однако ряд явлений, обнаруженных в указанный период — флюоресценция,.

– Конец работы –

Используемые теги: Геометрическая, Оптика0.049

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Геометрическая оптика

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Геометрическая оптика
Лекция Геометрическая оптика Специфика оптического диапазона заключается в двух... Рис... Отношение синуса угла падения к синусу угла преломления не зависит от величины этих углов а зависит только от свойств...

И1.Законы геометрической оптики.Их обоснование с точки зрения теории Гюйгенса
Линзы... Линза представляет собой обычно стеклянное тело ограниченное с двух сторон... Точка О оптический центр линзы...

Геометрическая оптика
Важнейшая проблема оптики вопрос о природе света. Первые представления о природе света возникли в древние века. Античные мыслители пытались понять… Греческий философ и математик Пифагор 582 500 гг. до н. э. и его школа… Евклид является основоположником учения о прямолинейном распространении света. Применив к изучению света математику,…

И1.Законы геометрической оптики.Их обоснование с точки зрения теории Гюйгенса
Линзы... Линза представляет собой обычно стеклянное тело ограниченное с двух сторон... Точка О оптический центр линзы...

Законы геометрической оптики.Их обоснование с точки зрения теории Гюйгенса
Линзы... Линза представляет собой обычно стеклянное тело ограниченное с двух сторон... Точка О оптический центр линзы...

Геометрическая оптика и квантовые свойства света

Глава 21 Элементы геометрической и электронной оптики
Глава Элементы геометрической и электронной оптики... Основные законы оптики Полное отражение... Еще до установления природы света были известны следующие основные законы оптики закон прямолинейного распространения...

Геометрические схемы пересечений в разных уровнях схемы полных и неполных развязок
является возможность использования под эстакадного пространства для гаражей и автомобильных стоянок а также легкость организации движения в разных... Внеуличные пешеходные переходы... Технико экономический анализ сравниваемых вариантов пересечений...

Геометрические приложения определенного интеграла
Длина плоской кривой Длина кривой заданной параметрически Рассмотрим параметрически заданную...

Геометрические характеристики плоских сечений
Площадь dF элементарная площадка... Статический момент элемента площади dF относительно оси x произведение... Моменты инерции сечения...

0.033
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам