рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Взаимодействия элементарных частиц

Работа сделанна в 2005 году

Взаимодействия элементарных частиц - Реферат, раздел Физика, - 2005 год - Элементарные частицы и их взаимодействия Взаимодействия Элементарных Частиц. Виды Фундаментальных Взаимодействий В Нас...

Взаимодействия элементарных частиц. Виды фундаментальных взаимодействий В настоящее время в природе известны четыре вида фундаментальных взаимодействий: сильное, электромагнитное, слабое и гравитационное.

Сильное взаимодействие удерживает нуклоны в атомных ядрах и присуще также адронам. К электромагнитным взаимодействиям сводятся непосредственно воспринимаемые нами силы природы (за исключением тяготения): упругие, вязкие, молекулярные, химические и прочие. Слабые взаимодействия вызывают β-распад радиоактивных ядер наряду с электромагнитными силами управляют поведением лептонов. Нейтральные лептоны не участвуют в электромагнитных взаимодействиях. Гравитационное взаимодействие присуще всем частицам.

Об интенсивности перечисленных взаимодействий можно судить по скорости процессов, вызываемых ими. Обычно для сравнения берут скорости процессов при кинетических энергиях порядка 1 ГэВ; такие энергии характерны для физики элементарных частиц. При таких энергиях процессы, вызываемые сильным взаимодействием, проходят за время порядка 10-23 с, электромагнитным – 10-20 с, слабым – 10-9 с. Другой величиной характеризующей интенсивность взаимодействия, является длина свободного пробега частицы в веществе.

Сильновзаимодействующие частицы с энергией 1 ГэВ можно задержать железной плитой с толщиной в несколько сантиметров. Нейтрино же с энергией 0,01 ГэВ, которым свойственно только слабое взаимодействие, для задержания потребовалось 109 км железа. Сильные и слабые взаимодействия проявляются только на коротких расстояниях. Радиус действия сильных взаимодействий составляет 10-13 см, а слабых – 2 х 10-16 см. Электромагнитные силы, напротив, являются дальнодействующими.

Они убывают пропорционально квадрату расстояния между частицами. По тому же закону убывают гравитационные силы. Поэтому отношение электромагнитных и гравитационных сил не зависит от расстояния между взаимодействующими частицами. Таким образом, в области, где проявляются слабые силы, гравитационное взаимодействие частиц на много порядков меньше даже слабого. Поэтому гравитационное взаимодействие в физике микромира не учитывается. Классическая физика принимала, что взаимодействие между телами передаётся с конечной скоростью посредством силовых полей.

Так, электрический заряд создаёт вокруг себя электрическое поле, которое в месте нахождения другого заряда действует на него с определённой силой. Так же, но уже посредством других силовых полей, осуществляются все взаимодействия в природе. Квантовая физика не изменила такие представления, но учла квантовые числа самого поля. Из-за корпускулярно-волнового дуализма всякому полю должна соответствовать определённая частица (квант поля), которая и является переносчиком взаимодействия.

Одна из взаимодействующих частиц испускает квант поля, другая его поглощает. Электромагнитные взаимодействия переносятся фотонами, сильные – глюонами, слабые – промежуточными векторными W+ – и Z0 бозонами, гравитационное – гипотетическими гравитонами. В настоящее время электромагнитное и слабое взаимодействия рассматриваются как разные проявления электрослабого взаимодействия. Слабые силы на малых расстояниях (порядка радиуса их действия) одного порядка с электромагнитными.

Для промежутков времени, необходимых для переноса взаимодействия, закон сохранения энергии нарушается. Иначе, для частиц, переносящих взаимодействия, нарушается обычная связь между энергией и импульсом. Поэтому эти частицы и названы виртуальными, как и процессы испускания-поглощения виртуальных частиц. Сильное взаимодействие обеспечивает и самую сильную связь элементарных частиц. В частности, связь нуклонов в атомном ядре обусловлена сильным взаимодействием.

Этим объясняется исключительная прочность атомных ядер, лежащая в основе стабильности вещества в земных условиях. Электромагнитное взаимодействие сводится взаимодействию электрических зарядов и магнитных моментов частиц с электромагнитным полем. Электромагнитное взаимодействие обеспечивает связь электронов в атомах, ионов в кристаллах, атомов в молекулах. Электромагнитное взаимодействие играет основную роль в окружающем нас макроскопическом мире наряду с тяготением.

Это связано с тем, что сильное взаимодействие на расстояниях больше размера ядра атома практически исчезает. Электромагнитное же взаимодействие, как и тяготение, бесконечны по радиусу действия. Слабое взаимодействие и процессы, связанные с ним, протекают крайне медленно по ядерному времени. Но его интенсивность растёт вместе с энергией. При ε ~ MW слабое взаимодействие сравнивается с электромагнитным. Гравитационное взаимодействие доминирует в случае больших масс объектов.

Но в мире элементарных частиц на расстояниях порядка размера атомного ядра это взаимодействие ничтожно. Оно, возможно, становится существенным лишь на расстояниях порядка 10-33 см. Великое объединение Одной из основных целей современной теоретической физики является единое описание окружающего нас мира. Например, специальная теория относительности объединила электричество и магнетизм в единую электромагнитную силу. Квантовая теория, предложенная в работах Глеэшоу, Вайнберга и Салама, показала, что электромагнитное и слабое взаимодействия могут быть объединены в электрослабое.

Так что есть основания полагать, что все фундаментальные взаимодействия в конечном итоге объединятся. Если мы начнём сравнивать сильное и электрослабое взаимодействия, то нам придётся уходить в области всё больших энергий, пока они не сравняются по силе и не сольются в одно в районе энергий в 1016 ГэВ. Гравитация же присоединится к ним согласно Стандартной Модели в районе энергий в 1019 ГэВ. К сожалению, такие энергии сталкивающихся на ускорителях частиц не только недоступны, но и но и вряд ли будут доступны в будущем.

Однако теоретические исследования по поиску единой теории всех фундаментальных взаимодействий идут полным ходом. Объединение двух фундаментальных теорий современной физики – квантовой теории и общей теории относительности – в рамках единого теоретического подхода до недавнего времени было одной из важнейших проблем. Примечательно, что эти две теории взятые вместе, воплощают почти всю сумму человеческих знаний о наиболее фундаментальных взаимодействиях в природе.

Поразительный успех этих двух теорий состоит в том, что вместе они могут объяснить поведение материи практически в любых условиях – от внутриядерной до космической области. Большой загадкой, однако, была несовместимость этих двух теорий. И было непонятно почему природа на своём глубоком фундаментальном уровне должна требовать двух разных подходов с двумя наборами математических методов, двух наборов постулатов и физических законов? В идеале хотелось бы иметь Единую теорию поля, объединяющую эти две фундаментальные теории. Однако попытки их соединения постоянно разбивались из-за появления бесконечностей (расходимостей) или нарушения некоторых важнейших физических принципов.

Объединить эти теории удалось лишь в рамках теории струн и суперструн. История создания теории струн началась с чисто случайного открытия в квантовой теории, сделанного в 1968 году Дж. Венециано и М.Судзуки.

Перелистывая старые труды по математике, они случайно натолкнулись на бета-функцию, описанную в XVIII веке Леонардом Эйлером. К своему удивлению, они обнаружили, что, используя эту функцию, можно замечательно описать рассеяние сталкивающихся на ускорителе частиц. В 1970 – 1971 годах Намбу и Гото поняли, что за матрицами рассеяния скрывается классическая (не квантовая) релятивистская струна, то есть некий микроскопический объект, отдалённо напоминающий тонкую, натянутую струну. Потом были сформулированы и построены методы квантования таких струн.

Однако оказалось, что квантовую теорию струн корректно (без отрицательных и больших единицы квантовых вероятностей) можно построить лишь в 10 и 26 измерениях, и модель сразу перестала быть привлекательной. 10 лет эта идея влачила жалкое существование, потому что никто не мог поверить, что 10- или 26-мерная теория имеет какое-либо отношение к физике в 4-мерном пространстве. Когда в 1974 году Шерк и Шварц предположили, что эта модель является на самом деле теорией всех известных фундаментальных взаимодействий, никто не принял это всерьёз. Спустя 10 лет, в 1984 году, появилась знаменитая работа М.Грина и Д.Шварца.

В этой работе было показано, что возникающие при квантовомеханических расчётах бесконечности в точности сокращаться благодаря симметриям, присущем суперструнам. После этой работы теория суперструн стала основным кандидатом на единую теорию всех фундаментальных взаимодействий элементарных частиц, и её начали активно разрабатывать, пытаясь свести всё разнообразие частиц и полей микромира к неким чисто пространственно-геометрическим явлениям.

В чём же заключается смысл этой «универсальной» теории? Мы привыкли думать об элементарных частицах как о точечных объектах. Возможно, что первичным является не понятие частицы, а представление о некоей струне – протяжённом, неточечном объекте. В этом случае все наблюдаемые частицы – лишь колебания этих самых струн. Струны бесконечно тонки, но длина их конечна и составляет около 10-33 см. Это ничтожно мало даже по сравнению с размером нейтрино, так что для многих задач можно считать объекты точечными.

Но для квантовой теории струнная природа элементарных частиц очень важна. Струны бывают открытыми и замкнутыми. Двигаясь в пространстве-времени, они покрывают (заметают) поверхности, называемые мировыми листами. Отметим, что поверхность мирового листа гладкая. Из этого следует одно важное свойство струнной теории – в ней нет ряда бесконечностей, присущих квантовой теории поля с точечными частицами.

Струны имеют определённую устойчивую форму колебаний – моды, которые обеспечивают частице, соответствующей данной моде, такие характеристики, как масса, спин, заряд и другие квантовые числа. Это и есть окончательное объединение – все частицы могут быть описаны через один объект – струну. Таким образом, теория суперструн связывает все фундаментальные взаимодействия и элементарные частицы между собой способом, похожим на тот, которым скрипичная струна позволяет дать единое описание всех тонов – зажимая по-разному скрипичные струны, можно извлекать самые разные звуки.

Простейшее струнное взаимодействие, описывающее процесс превращения двух замкнутых струн в одну, можно представлять в виде устоявшейся аналогии – обычных брюк, форму которых приобретают их мировые листы. В этом случае штанины символизируют сближающиеся струны, сливающиеся в одну в районе верхней части брюк. Соединим два простейших струнных взаимодействия между собой (склеим двое брюк в районе пояса) и получим процесс, в котором две замкнутые струны взаимодействуют через объединение в промежуточную замкнутую струну, которая потом опять распадается на две, но уже другие. В струнной теории, в частности, существует замкнутая струна, соответствующая гравитону.

Одной из особенностей теории является то, что она естественно и неизбежно включает в себя гравитацию как одно из фундаментальных взаимодействий. Суперструны существуют в 10-мерном пространстве-времени, в то время, как мы живём в 4-мерном.

И если суперструны описывают нашу Вселенную, нам необходимо связать эти два пространства. Для этого обычно сворачивают 6 дополнительных измерений до 10-33 см. Из-за малости этого расстояния оно становится абсолютно незаметным для всех современных ускорителей элементарных частиц. В конечном итоге мы получим привычное 4-мерное пространство, каждой точке которого отвечает крохотное 6-мерное пространство, так называемое Калаби-Яу. У струн есть ещё одно замечательное свойство – они могут «наматываться» на компактное измерение. Это приводит к появлению так называемых оборотных мод в спектре масс. Лёгкость оборотных мод позволяет интерпретировать их как наблюдаемые нами элементарные частицы.

Величайший парадокс теории суперструн заключается в том, что она сама по себе не едина. Можно выделить 5 различных согласованных суперструнных теорий, известных как: тип I, тип IIА, тип IIВ, SO(32) и Е8 х Е8. В начале последнего десятилетия ХХ века одним из принципиальных вопросов теоретической физики был вопрос выбора той или иной струнной теории качестве кандидата на роль Единой теории.

В решении этого фундаментального вопроса в последние годы был достигнут значительный прогресс. Оказалось, что все известные теории суперструн связаны между собой преобразованиями дуальности, открытыми в 1995 году. Дуальность теорий – это их существенное различие в деталях, но опись одной и той же физической реальности. На основе анализа взаимосвязи разных теорий выдвинута гипотеза, согласно которой все известные теории суперструн являются предельными случаями некоей фундаментальной М-теории.

Эта теория живёт в 11-мерном пространстве-времени и на больших расстояниях описывает 11-мерную супергравитацию. С открытием дуальности связана третья струнная революция. Первая струнная революция была вызвана изучением амплитуд рассеяния. Вторая струнная революция связана с открытием Грином и Шварцем суперсимметрии.

Суперсимметрия – это симметрия между бозонами и фермионами. Фермионы и бозоны оказываются связанными через эту симметрию и должен быть суперпартнёр в «противоположном лагере».

– Конец работы –

Эта тема принадлежит разделу:

Элементарные частицы и их взаимодействия

Обнаружение в начале 20-го века мельчайших носителей свойств вещества – атомов – позволило описать все известные вещества как комбинации конечного,… Выявления сложного строения атомов, оказавшихся построенными всего из трёх… Нельзя с уверенностью сказать, что частицы, элементарные в смысле приведённого определения, существуют. Протоны и…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Взаимодействия элементарных частиц

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Краткая историческая справка
Краткая историческая справка. Первая элементарная частица – электрон – была открыта Дж. Дж. Томсоном в 1897 году. Он установил, что так называемые катодные лучи образованы потоком мельчайших

Элементарные частицы и их свойства
Элементарные частицы и их свойства. Классификация элементарных частиц. Все частицы (в том числе неэлементарные и квазичастицы) делятся на бозоны (или бозе-частицы) и фермионы (или ферми-част

Практическое применение
Практическое применение. элементарных частиц На первый взгляд кажется, что изучение элементарных частиц имеет чисто теоретическое значение. Но это не так. Применение элементарным частицам нашли во

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги