рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Особенности измерения электрической проводимости

Особенности измерения электрической проводимости - Курсовая Работа, раздел Физика, Изучение особенностей электрических свойств магнитных жидкостей Особенности Измерения Электрической Проводимости. В Данном Экспериментальном ...

Особенности измерения электрической проводимости. В данном экспериментальном исследовании измерялась электрическая проводимость магнитной жидкости в зависимости от концентрации твёрдой фазы. Для этого использовалась двухэлектродные ячейки, одна из которых имеет электроды из гладкой платины, а другая из меди. Для вычисления электропроводности магнитной жидкости необходимо знать константу ячейки А (м-1), которую невозможно определить прямым измерением длины сосуда и площади его поперечного сечения вследствие: а) рассеивания силовых линий тока, которые не ограничиваются столбиком магнитной жидкости, находящейся точно между электродами; б) невозможности выдержать точно параллельное расположение электродов и строго определённую их форму; в) сложной формы стеклянного сосуда, ограничивающего распространение силовых линий тока. На практике принято [Лопатин] для определения константы ячейки А применять стандартные водные растворы хлористого калия, величина электропроводности которых при различных температурах известна с большой точностью.

После измерения сопротивления ячейки, заполненной раствором хлористого калия с известной величиной у, из произведения А=уR легко вычисляется константа ячейки А. Для вычислений стандартной величины электропроводности нормальных растворов хлористого калия при температурах до 50˚С удовлетворительные результаты даёт формула: , где с – константа, зависимость которой от концентрации раствора хлористого калия приведена ниже: KCl… 0.01 0.1 0.5 C104…232 228 218 При определении константы ячейки с применением стандартных растворов KCl, концентрация которых ниже 0.1 н необходимо делать поправку на электропроводность воды, которая при 25˚С должна иметь величину, близкую к 1.110-6 симсм-1. 1.4 Теория удельной объёмной проводимости применительно к магнитной жидкости.

Жидкими основами в магнитных жидкостях, как правило, являются органические среды, занимающие промежуточное положение между ионными диэлектриками и жидкими ионными проводниками (водными растворами электролитов). Широко используемый в качестве твёрдой фазы магнетит имеет в монолите относительно высокую удельную электрическую проводимость, которая, однако, на несколько порядков ниже, чем у металлов г≈2*104 См*м-1 Напомним, что в технических магнитных жидкостях объёмное содержание твёрдых частиц не превышает 25% (иначе наблюдается резкое снижение текучести). При этом магнитные частицы отделены друг от друга слоем ПАВ. Поверхностно активное вещество (например, олеиновая кислота) обычно также органическая жидкость, имеющая химическое сродство к основе и близкие с ней значения подвижности носителей заряда и их концентрации.

Так как в качественно приготовленной магнитной жидкости все твёрдые частицы окружены слоем ПАВ, то объёмная проводимость магнитной жидкости должна определяться, по-видимому, концентрацией носителей заряда и их подвижностью в жидкой фазе. В многочисленных экспериментах не было зарегистрировано существенного влияния магнитного поля, направленного либо параллельно, либо перпендикулярно к постоянному току, проходящему по измерительной ячейке, на электрическую проводимость магнитной жидкости.

Типичные вольт-амперные характеристики качественно приготовленных магнитных жидкостей на основе керосина, снятые без магнитного поля означают: 1) для жидкости с умеренной концентрацией дисперсной фазы (ц=0,008) ток резко возрастает с увеличением напряжения; 2) для жидкости высококонцентрированной (ц=0,3) ток с увеличением напряжения возрастает на очень маленькую величину.

Качественной считалась жидкость, коллоидные частицы Fe3O4 которой пять раз отмывались дистиллированной водой после осаждения.

Для этих жидкостей в исследованном диапазоне концентраций ц=0-0,3, начиная с напряжённости Е=2,5 кВ/м, вольт-амперные характеристики становились линейными. По их углу наклона рассчитывалась удельная электрическая проводимость.

Удельная проводимость исследуемых магнитных жидкостей зависела от объёмной концентрации магнетита немонотонным образом.

В области 0<ц&#8804;0.09 проводимость росла с увеличением концентрации магнитных частиц, а в области высоких концентраций (ц>0.16) – падала.

Причём графики, полученные разными экспериментаторами, расходятся. Это можно объяснить, по-видимому, температурной зависимостью электрической проводимости жидкости.

Различие в значениях г может быть обусловлено разной степенью отмывки дисперсного магнетита после его получения. Известно, что аналогичный вид зависимости электрической проводимости свойствен растворам сильных электролитов, и снижение проводимости в области высоких концентраций объяснялось падением подвижности ионов при увеличении общего числа носителей заряда. Это обстоятельство позволяет предположить, что в магнитных жидкостях, полученных методом химической конденсации, существует примесный тип проводимости.

Для уточнения механизма переноса заряда в магнитных жидкостях проводилась серия опытов на жидкостях с магнетитом, который вообще не отмывался после процесса химической конденсации. Вольт-амперные характеристики таких жидкостей снять не удалось, кроме одной, у которой концентрация твёрдой фазы ц=0.27. В экспериментах, проводимых при t=22&#730;C, наблюдался экспоненциальный рост силы тока с увеличением напряжённости электрического поля. Начиная с Е=15-20 кВ/м, наблюдались скачкообразное увеличение I и нестационарность переноса заряда.

Для жидкости, у которой ц=0.27, сила тока увеличивалась пропорционально напряжению до Е=15кВ/м, затем вольт-амперная характеристика теряла линейность. Электрическая проводимость этой жидкости рассчитывалась по линейному участку. Сделаем оценку гидродинамической концентрации для объёмной концентрации ц=0.27. Для частиц средним диаметром dср=10 нм и толщины адсорбционного слоя д=2нм (максимальная длина молекулы олеиновой кислоты) получим цr=(dr/dср)*ц=0.74. При такой концентрации покрытые слоем олеиновой кислоты полидисперсные частицы магнетита находятся в непосредственной близости друг к другу. Следовательно, перемещение в электрическом поле примесных ионов, адсорбирующихся на частицах магнетита в процессе химической конденсации и переходящих в раствор после разбавления концентрированной пасты жидкой основой, затруднено из-за их взаимодействия с полярными длинноцепочечными молекулами олеиновой кислоты.

Это взаимодействие и могло быть причиной стационарного переноса заряда в жидкости с объёмной концентрацией непромытого магнетита ц=0.27, содержащей избыточное количество примесных ионов. В жидкостях с меньшими концентрациями непромытого магнетита примесные ионы относительно свободно перемещаются по жидкой фазе, вызывая предпробойное состояние при увеличении напряжённости поля. Другая причина падения электрической проводимости в области высоких концентраций магнитных частиц может заключаться в усиливающимся рассеивании примесных ионов на магнитных моментах частиц.

Приведённые результаты позволяют оценить качество магнитной жидкости по её вольт-амперной характеристике. Избыток примесных ионов в концентрате из коллоидных частиц магнетита и стабилизатора затрудняет стабилизацию магнитной жидкости, так как адсорбирующиеся на частицах ионы препятствуют полному покрытию частиц адсорбционной оболочкой.

Следовательно, отклонение от линейной вольт-амперной характеристики или нестационарность процесса переноса заряда в жидкости означают неполную отмывку высокодисперсного магнетита, что приводит к снижению агрегативной устойчивости магнитной жидкости. Удельная электрическая проводимость магнетитовых магнитных жидкостей на углеводородной основе, измеренная на переменном токе f=60Гц, имеет тот же порядок, что и проводимость, измеренная на постоянном токе: г=10-6 См/м. Такой же результат был получен Б.Капланом и Д.Джейбековым (1976) для магнитной жидкости на основе воды. По зависимости удельной электрической проводимости магнитной жидкости от температуры можно оценит энергию активации носителей заряда.

Обработка данных зависимостей lnг от 1/Т находят энергию активации Энергия активации приблизительно равна 0.2 эВ для магнитных жидкостей и 0.6 Эв для керосина.

Снижение этой энергии для магнитных жидкостей по сравнению с керосином согласуется с гипотезой о существовании в магнитных жидкостях примесных ионов.

Отметим, что электрическое сопротивление магнитных жидкостей снижается приблизительно на три порядка по сравнению с основой. Однако оно остаётся на несколько порядков выше, чем у традиционных магнитных материалов, и поэтому при воздействии внешних магнитных полей потери в них на индукционные токи будут малы. Электрическая прочность магнитных жидкостей характеризуется пробивным напряжением. Измерения пробивного напряжения для магнитных жидкостей на углеводородной основе показали его снижение (более чем на 50%) по сравнению с жидкой основой.

С увеличением магнитного поля, направленного параллельно электрическому, пробивное напряжение дополнительно уменьшается и достигает Епр&#8776;0.5 МВ/м при индукции 0.4=0.8 Тл. Эти данные получены для магнетитовых магнитных жидкостей на кремнийорганической основе. Многократное воздействие электрического поля снижало пробивное напряжение испытуемого образца. Глава 2. Теория диэлектрической проницаемости и методика её измерения. 2.1.

– Конец работы –

Эта тема принадлежит разделу:

Изучение особенностей электрических свойств магнитных жидкостей

Магнитные жидкости обладают уникальными магнитными свойствами: хорошей текучестью и намагниченностью. Важной особенностью ферромагнитных коллоидов, в отличие от большинства… Наблюдаемые в магнитной жидкости магнитомеханические, магнитооптические и электрофизические явления во многом…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Особенности измерения электрической проводимости

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие электрической проводимости
Понятие электрической проводимости. Все проводники, существующие в природе, в зависимости от механизма переноса электричества при прохождении через них электрического тока можно разделить на три кл

Учёт возможных погрешностей при проведении измерений электрической проводимости
Учёт возможных погрешностей при проведении измерений электрической проводимости. Изучению поляризации растворов электролитов переменным током посвящено много экспериментальных и теоретически

Историческая справка и понятие диэлектрической проницаемости
Историческая справка и понятие диэлектрической проницаемости. Первыми работами, которые послужили основой для использования методов измерения диэлектрической проницаемости, были работы химика Друде

Зависимость диэлектрической проницаемости от различных физических величин
Зависимость диэлектрической проницаемости от различных физических величин. При измерении диэлектрической проницаемости исследуемого вещества необходимо помнить и учитывать зависимости прониц

Метод измерения диэлектрической проницаемости
Метод измерения диэлектрической проницаемости. В современных методах определения величины диэлектрической проницаемости используется как постоянный ток, так и переменный ток в широком диапаз

Диэлектрические характеристики магнитных жидкостей
Диэлектрические характеристики магнитных жидкостей. Диэлектрическая проницаемость е большинства диэлектриков, характеризующая их поляризацию в электрическом поле, не зависит от напряжённости поля,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги