рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Феноменология пламен

Работа сделанна в 2003 году

Феноменология пламен - Курсовая Работа, раздел Физика, - 2003 год - Методики диагностики пламен углеводородных топлив Феноменология Пламен. И. Процесс Горения Веществ – Эта Сложная Быстропротекаю...

Феноменология пламен. и. Процесс горения веществ – эта сложная быстропротекающая экзотермическая реакция окисления топлива, протекающая, как правило, с образованием пламени. Однако не все процессы горения сопровождаются возникновением пламени и не все пламена являются результатом горения.

Известны пламена рекомбинации атомов, либо экзотермических реакций распада веществ (озона, ацетилена и т.п.). Протекание экзотермических реакций не единственное условие горения и возникновения пламени. Нужно еще, чтоб реакция, как источник тепла, протекала достаточно быстро, а ее скорость преобладала над скоростью процессов, отводящих и потребляющих тепло. Известны холодные изотермические пламена, в которых собственный источник тепла мал. Такие процессы пространственно базируются у нагретого тела. Мы рассматриваем горение углеводородов, всегда сопровождающиеся возникновением пламени.

Поэтому понятия “горение” и “пламя” можно использовать как адекватные. Если в какой-либо области реакционной системы инициировать процессы горения, то при определенных условиях зона реакции может распространяться по еще не прореагировавшему веществу. Это воспринимается как распространение волны, которую мы будем называть фронтом пламени. Вообще термин “волна горения” имеет более широкий смысл, поскольку она не обязательно сопровождается пламенем.

Распространение волны горения можно представить себе как результат воспламенения непрореагировавших слоев газа вследствие теплопроводности из области, где проходит горение (тепловой механизм), либо путем инициирования реакции продифундировавшими оттуда химически активными частицами (цепной механизм). Часто оба этих механизма действуют одновременно. Особенность горения заключается в том, что условие, необходимое для его протекания, возникает в ходе самой реакции.

Обычно этими условиями являются высокая температура, а также достаточная концентрация активных веществ (радикалов), несущих цепь горения. Классифицировать пламена можно по различным признакам: по способу подготовки горючей смеси (пламена предварительно перемешанных смесей, диффузионные и другие), по степени разогревания реагирующей смеси (холодные, горячие), по механизму реакции (пламя с цепными, с разветвленными цепными и другими реакциями), по составу (пламена стехиометрических, бедных, богатых смесей), по характеру распространения газового потока(ламинарные и турбулентные пламена), а также по другим параметрам.

Различные виды пламен можно получить путем изменения условий протекания экзотермического процесса. Так, варьируя температуру стенки и состав горючей смеси, можно получить пламена с различной степенью превращения топлива. Если возрастание температуры вследствие реакции составляет не более 0.1 – 1К, пламена называются холодными изотермическими.

По мере возрастания давления возрастает количество тепла выделяемое в единицу времени. При соответствующем подборе концентраций окислителя в исходной горючей смеси, а также температуры реактора, можно получить так называемые холодные неизотермические пламена (разогрев до 100 К). Степень превращения топлива в этих пламенах заметно больше, свечение слабое. Конечным продуктом горения углеводородных топлив холодных пламен является смесь пероксидных соединений, альдегидов, кетонов, непредельных углеводородов, монооксида и диоксида углерода, паров воды. Горячие пламена характерны для быстрореагирующих смесей.

Концентрация окислителя в горючей смеси при этом близка к стехиометрической. Температура достигает 3000 – 5000 К. Пламена широко распространены в современной технике в тепловых процессах. Наиболее близки по своим свойствам к горячим голубые пламена (Т=770-970 К), в продуктах горения которых преобладает монооксид углерода и молекулярный водород.

Горячие пламена получены в широком диапазоне давлений: 0.01 – 10 мПа. Для ознакомления можно рассмотреть структуру пламени газовой горелки. На (рис. 1) представлено пламя смеси пропана с воздухом. Видно что в пределах слабосветящегося факела имеется ярко очерченный конус. Горячая смесь, выходящая из устья горелки, распределяется внутри конуса и выходит за его пределы по направлению нормали к внутренней поверхности в виде уже конечных продуктов сгорания. Видимая толщина стенки конуса составляет 0,4 мм. В пределах этого расстояния горючая смесь успевает нагреться и прореагировать и, следовательно, выделить в виде тепла и излучения всю энергию топлива.

Эта область пламени, локализованная границами начала и окончания реакции, называется фронтом пламени. Область пламени, следующая за фронтом, называется равновесной зоной, или внешним конусом. Состав газов в этой зоне определяется состоянием равновесия реакции Н2О = Н + ОН и СО2 = СО+О. Если на мгновение остановить поступление в горелку горючей смеси, то конус сначала уменьшится по высоте, затем в течении десятых долей секунды становится плоским, далее прогнётся, и пройдя устье горелки, растворится внутри его. Это наблюдение показывает, что фронт может распространятся по свежегорючей смеси.

Поэтому его стационарное положение на выходе горелки (стационарное горение) возможно лишь при уравновешивании скорости горения, или нормальной скорости распространения фронта пламени и скорости течения выходящей из горелки свежегорючей смеси. Нормальная скорость распространения фронта пламени (распространение по направлению к нормали к фронту) пропана составляет 40см/с. Следовательно в течении времени реакции10-3с топливо сгорает до конечных продуктов СО2 и Н2О. Оптические и спектроскопические методы исследования пламен.

Бесконтактные (оптические и спектроскопические ) методы изучения пламен позволяют производить измерения не нарушая гидродинамической, тепловой и химической структуры исследуемой системы. Поэтому использованию таких методов отдается предпочтение, даже если их применение связано с большими техническими трудностями.

Кроме того, возможности бесконтактных методов стремительно растут, в частности, вследствие развития лазерной техники. Оптические методы. Методы, основанные на собственном излучении пламен. Для изучения быстро протекающих процессов наилучшим прибором, получившим общее признание, является скоростная кинокамера, или лупа времени, как ее иногда называют.

С ее помощью можно увидеть процессы, недоступные визуальному наблюдению. Обладая высоким временным расширением (1мкс), кинокамера позволяет следить не только за высокоскоростными турбулентными факелами, но и за взрывными процессами, а также за другими нестационарными проявлениями волны горения. Кинокамеру можно использовать для изменения распределения скорости потоков за фронтом горения по следу светящихся частиц. На собственном излучении пламен основаны также пирометрические методы.

В них используется закон Стефана – Больцмана для энергии полного излучения нагретого тела: ЕТ = Т4єТ, где єТ – коэффициент черноты, а также формула Вина для монохроматической энергии излучения нагретого до температуры Т твердого тела: Е, Т = с1/* -3*ехр(с2/Т). Методы, основанные на просвечивании пламен. Более подробную информацию о тепловых либо концентрационных неоднородностях в газовом потоке можно получить при пропускании света через исследуемый участок пламени нагретой струи жидкости или газа, смешивающихся струй различных прозрачных жидкостей или газов и т.п. Имеющиеся в просвечиваемом объекте тепловые и концентрационные неоднородности вызывают изменение коэффициента преломления.

Измерения двухмерного распределения этой величины позволяет получить информацию о поле течения, температурах и концентрациях в избранной плоскости течения. Оптической неоднородностью, или шлирой, называют малую область в прозрачной среде, в которой имеется переменный градиент коэффициента преломления света.

Нерегулярное отклонение света в различных точках шлиры регистрируется на фотографиях в виде тени данного объема газа, либо тени большого участка потока жидкости или газа. При этом пучок света, проходящий через оптическую неоднородность Н (рис.2), откланяется на экране Э от точки А к А/ на угол є. Поскольку угол є мал, НА/=НА, и вследствие задержки луча SA/ во времени, на экране возникает интерференционная картинка.

Соответствующие оптические установки позволяют измерять величину смещения луча а = АА/ (теневой метод), угол є (метод Теплера) либо время запаздывания луча  (интерференционный метод). В первом приближении а пропорциональна второй производной показателя преломления n,є grad n и  n. В теневом методе (рис.3) освещенность экрана определяется расстоянием от кромки ножа Фуко до оптической оси. Этот метод пригоден для изучения явлений, связанных с резким изменением показателя преломления, например, во фронте пламени предварительно перемешанных газов или в детонационной и ударной волнах. 1-источник света; 2- линзы; 3-щель; 4-нож Фуко; 5-экран.

Свет от источника выходит параллельным пучком из объектива, проходящего через оптическую неоднородность. В случае d2n/dx20, на экране видны светлые и затененные места в результате перераспределения света шлирой. Метод позволяет получить тенеграмму исследуемого объекта сравнительно больших размеров, но, к сожалению, не пригоден для количественных исследований структуры оптических неоднородностей.

В методе Теплера (шлирен-методе) отклонения света смещает изображение источника и обуславливает изменение освещение изображения некоторой точки исследуемого поля на экране (рис. 4). Источник света S помещен в фокусе вогнутого зеркала М1, так что исследуемый объект освещенный параллельным пучком света. Второе зеркало М2 дает изображение источника в фокусной плоскости К, за которой расположена фокусная линза L, дающая изображение на экране Э или фотопластинке.

Если градиент коэффициента преломления отсутствует (или равномерен в пределах разложения) на всей рабочей части, то отдельные изображения источника совпадут. При возникновении градиента неоднородности изображение смещается в фокусе плоскости К. Для обнаружения этого смещения в методе Теплера применяется прямоугольный источник света, а в фокусной плоскости К помещается кромка ножа Фуко. Она расположена так, что в отсутствие оптических возмущений освещение экрана равномерно.

Если при появлении оптической неоднородности (возмущения) часть изображения источника смещается, то освещенность этой части изображения на экране уменьшается или возрастает на величину, пропорциональную градиенту показателя преломления, в зависимости от того, направлено ли отклонение в сторону непрозрачной части ножа или в противоположную. Методы, основанные на упругом рассеивании света.

Упругое рассеивание света на мелких частицах легло в основу получивших широкое распространение лазерных анемометров. Метод измерения скоростей основан на использовании эффекта Доплера. Если на исследуемую часть потока, содержащую рассеивающие свет частицы, направить монохроматическое излучение с частотой 0, то частота рассеянного света в направлении наблюдателя н изменится на д: д = 0 - н = 1/2(Кн –К0)U = 1/2КU, где К0 и Кн –волновые спектры падающего рассеивающего излучения, К = Кн – К0 - вектор скорости рассеивающих частиц.

Термопарный метод. К основным преимуществам данного метода следует отнести то, что термо-э.д.с. может быть измерена с весьма высокой точностью и что возможно изготовить весьма малые термопары (микротермопары). Последнее обстоятельство позволит достичь высокой разрешающей способности и значительно уменьшить погрешности, обусловленные аэродинамическими возмущениями, возникающие при внесении термопары в пламя.

Первые экспериментальные исследования термопары пламен были выполнены методом зондирования фронта тонкими (20мкм) термопарами. Наряду с термопарами применяли и термометры сопротивления, а также, методы оптической интерферометрии, пневматического зонда, треков, поглащения радиации и радиационной пирометрии. Но все же метод с термопарами предпочтительнее, так как сочетает высокую точность измерения локальной температуры с хорошим пространственным разрешением.

При очень высоких температурах пламен термопарный метод лучше не применять по следующим причинам: 1) при температуре 1770 – 2270 К материал обычно используемых термопар разрушаемых; 2) при высоких температурах растут радиационные потери, а способы ведущие к их уменьшению, приводят к значительному уменьшению измерительной аппаратуры; 3) при больших скоростях потоков значительными и трудно учитываеми становятся погрешности, обусловленые аэродинамическими искажениями; 4) внесение термопары в пламя может повлиять на химические процессы в пламенах; 5) при быстро меняющихся температурах термопарный метод непригоден вследствие инертности термопар. Спектроскопия пламен.

УФ- и ИК-спектроскопия пламен. Превращение молекул топлива во фронт пламени сопровождается испусканием света в различных спектральных областях. Поэтому спектроскопия пламен, как бесконтактный метод, с давних пор была главным инструментом исследования процессов горения.

Обнаружение и идентификация спектров неизвестных активных частиц, существование которых не доказано, но участие их в процессах горения предполагается на основе косвенных данных, все еще остается задачей современной спектроскопии. Спектр углеводородных пламен в видимой УФ области содержит яркие системы полос ОН, СН и полосы Свана. В УФ-области есть также система полос НСО и СН2О. Излучение этих молекул обусловлено ярким окрасом фронта пламени. В ИК-спектрах углеводородных пламен присутствуют яркие полосы излучения молекул воды и диоксида углерода. Обшая характеристика методов лазерной спектроскопии.

В настоящее время широкое распространение получили лазерные методы исследования пламен. Чрезвычайно высокая плотность энергии, полученная в лазерах, а также довольно большая длина когерентности послужила основой для развития следующих методов: 1) внутрирезонаторной лазерной спектроскопии (ВРЛС); 2) спектроскопии лазерно-индуцированной флуоресценции (СЛИФ); 3) спектроскопии спонтанного комбинированного рассеивания (ССКР); 4)спектроскопии когерентного антистоксового комбинационного рассеивания (СКАКР); 5) оптогальванической лазерной спектроскопии (ОГЛС); 6) спектроскопии лазерного магнитного резонанса (СЛМР). Лазерные методы.

Зондирование пламени пробоотборниками. Введение зонда в неравновесную среду, какой является зона фронта пламени, вызывает ряд опасений но они не всегда оправдываются. Зонд представляет собой кварцевую трубку с оттянутым капилляром в форме усеченного конуса с углом раствора 10-15. Общая длина капилляра до 8 мм, внутренний диаметр его входного отверстия 35 мкм, а наружный не превышает 100-350 мкм. Такая конструкция зонда позволяет вводить его в пламя без какого-либо влияния на фронт.

– Конец работы –

Эта тема принадлежит разделу:

Методики диагностики пламен углеводородных топлив

Это стало очевидным как раз в то время, когда наше понимание химии горения (по крайней мере с участием небольших молекул) и возможности… Основным условием применимости теории горения до недавнего времени было… Однако этот важный для теплотехнических расчетов параметр не может характеризовать те свойства процесса горения,…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Феноменология пламен

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЭПР -спектроскопический метод
ЭПР -спектроскопический метод. Метод ЭПР позволяет измерять концентрацию атомов и радикалов в пламенах. Пламя помещают под резонатором радиоспектрометра. Важно не допускать изгиба в трубке п

Метод резонансной флуоресценции
Метод резонансной флуоресценции. Основным инструментом лазерной спектроскопии является лазер с перестраивающейся частотой, в частности, лазеры на основе органических красителей. В настоящее

Внутрирезонаторная лазерная спектроскопия
Внутрирезонаторная лазерная спектроскопия. Весьма эффективен лазерный метод высокочувствительного обнаружения слабых линий поглощения, основанный на помещении внутрь резонатора многоходового лазера

Лазерный магнитный резонанс
Лазерный магнитный резонанс. ЛМР). Схема лазерного спектрометра магнитного резонанса с внутренним поглощением: 1- магнит; 2- модуляционные катушки; 3- прерыватель; 4- диэлектрический расщепит ель;

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги