МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ. Электромеханическая система на рис. 1.1. представляет собой электромагнитный демпфер, который нужен для снижения скорости движущейся массы перед ударом.

В исходном состоянии масса m поднята над опорой на высоту H. Предоставленная самой себе масса начинает двигаться в поле силы тяжести и падает на опору.

Удар считается абсолютно неупругим (вся кинетическая энергия теряется). Для снижения энергии удара с массой m жёстко связан якорь электромагнитного демпфера.

Индуктор с катушкой закреплёны неподвижно относительно опоры.

Катушка подключена к схеме питания. Положение индуктора подобрано таким образом, что при подлёте массы к опоре электромагнитная сила, развиваемая демпфером, резко возрастает, в результате чего скорость падения массы и энергия удара снижается. Для упрощения математической модели приняли следующие допущения: Магнитная проницаемость стали равна бесконечности: ст = ; Электропроводность равна нулю: ст = 0. i - ток в катушке; w - число витков в катушке; G(x) - зависимость проводимости магнитной цепи от положения сердечника.

При таких допущениях магнитную цепь считаем линейной и электромагнитную силу направленную по оси ОХ на рис.1.1. определили по формуле: Для построения графика функции G(x) приняли, что сердечник имеет координату x=0 тогда, когда его верхний торец расположен на уровне верхнего края катушки. Поскольку аналитическое определение зависимости G(x) представляет собой сложную задачу, а погрешность расчёта магнитных цепей велика, то зависимость G(x) аппроксимировали аналитической функцией вида: где График G(x) приведен на рис. 1. Также нашли аналитические выражения для Ba - средняя индукция якоря, формула (2.9.) и  - потокосцепление, формула (2.10.): Соотношения 2.2. – 2.10. использовали далее при математическом моделировании электромагнитного демпфера.

На рис.2.2 приведена электрическая схема питания обмотки демпфера.

В начальный момент времени диод VD закрыт и ток источника тока J бежит по обмотке демпфера. В некоторый момент времени, когда напряжение на диоде достигнет порогового, диод откроется. Энергия запасенная в обмотке демпфера будет уменьшаться, так как образуется короткозамкнутый контур. Ток через диод будет также уменьшаться, а так как сила пропорциональна току, то будет График функции G(x). Схема питания обмотки демпфера. уменьшаться и сила, то есть и скорость груза.

Анализировали переходные процессы методом припасовывания. Согласно данному методу весь период работы схемы разбивается на отдельные "интервалы линейности" , каждый из которых описывается линейной системой дифференциальных уравнений (ДУ). Припасовывание заключается в стыковке полученных численных решений, причём значения переменных состояния, полученные в конце n - го интервала, используются как начальные значения этих же переменных состояния для (n+1) - го интервала.

Зная, что количество ключевых элементов в схеме определяет количество интервалов линейности, а для исследуемой схемы этих элементов 2, диод и контакт между грузом и опорой, определили количество интервалов линейности. Получили четыре возможных интервала линейности. Для упорядочения состояний ввели логические переменные: «0» - если диод закрыт; «1» - если диод открыт; «0» - если контакта нет; «1» - если контакт есть. Определили номер состояния по формуле: n = VD + 2Cont. (2.11.) Для каждого из состояний получили математическую модель в виде системы дифференциальных уравнений и системы условий, определяющих нахождение системы в этом состоянии.

Переменными состояния являются потокосцепление, скорость движения груза относительно опоры и координата сердечника. Перед началом численного интегрирования им присваивали начальные значения, взятые из предыдущего состояния. Также составили условия перехода от одного состояния к другому. Составили математические модели для состояний исследуемой системы: Состояние n = 0 (диод закрыт, контакта между грузом и опорой нет). Данное состояние описывается системой дифференциальных уравнений 2.12. Условиями перехода от этого состояния к другим являются неравенства 2.13 – 2.14. Схема замещения для этого состояния показана на рис. 2.3. Условие открытия диода: Условие летящего груза: Если выполняются условия 2.13 - 2.14, то схема переходит к состоянию n=1 (открылся диод, контакта нет). Состояние n=1 (диод открыт, контакта нет). Данное состояние описывается системой дифференциальных уравнений 2.15. Условиями перехода от этого состояния к другим являются неравенства 2.16 и 2.17. Схема замещения для этого состояния показана на рис.2.4. Условие закрытия диода: Схема замещения для состояния n=0. Схема замещения для состояния n=1. Условие груза лежащего на опоре: Если выполняются условия 2.16 и 2.17, тогда схема переходит к состоянию n=2. Состояние n=2 (диод заперт, контакт есть). Данное состояние описывается уравнением 2.18. Схема замещения для данного состояния показана на рис. 2.3. IL = J (2.18.) Если система пришла в данное состояние, то ни в какое другое состояние она уже перейти не может, то есть переход системы в данное состояние означает завершение её работы.

Состояние n=3 (диод открыт, контакт есть). Данное состояние описывается уравнением 2.19. Условиями перехода от этого состояния к другим будут неравенства 2.14 и 2.16. Схема замещения для данного состояния показана на рис.2.4. Получены системы дифференциальных уравнений (СДУ) для всех состояний исследуемой системы. Перед началом численного интегрирования переменным состояния, входящим в эти СДУ, присваивали начальные значения переменных состояния из предыдущего состояния. 3.