КОРРЕКЦИЯ ТОЧЕК СТЫКОВКИ

КОРРЕКЦИЯ ТОЧЕК СТЫКОВКИ. Точный момент переключения из одного состояния в другое можно определить достижением точного равенства в условиях переключения.

Однако при численном интегрировании условия переключения проверяются не в каждый момент времени, а дискретно, то есть с каким - то шагом интегрирования.

Поэтому добиться точного равенства в условиях переключения практически невозможно.

Для уменьшения ошибки определения момента переключения и, соответственно, ошибки определения начальных условий для следующего состояния можно уменьшить шаг интегрирования.

Однако, это приводит к возрастанию времени расчёта и возрастанию погрешности округления. В данной работе использован следующий подход. Пусть условие переключения выглядит следующим образом: Р &#61603; 0, где Р - это критерий переключения; Пусть на к - ом шаге интегрирования Рк > 0, а на к +1 - ом шаге Рк < 0. В этом случае очевидно, что точный момент переключения находится между рассматриваемыми моментами времени tк и tк+1: tк = k &#61655; h (3.1.) tк+1 = (k + 1) &#61655; h (3.2.) где h - это шаг интегрирования.

Предположим, что параметр Р изменяется линейно (рис.3.1), из подобия треугольников находим: t* = tк + mh (3.3.) где (3.4.) m - коэффициент деления шага интегрирования.

Аналогично должны быть уменьшены приращения, полученные всеми переменными состояния на к+1 - ом шаге интегрирования: График определения момента переключения. (3.5.) - значение i - ой переменной состояния в момент времени tк; &#61508;Xi - приращение i - ой переменной состояния на k+1 - ом шаге интегрирования; - точное значение i - ой переменной состояния в момент переключения. Используя данный подход, удалось существенно снизить погрешность определения начальных условий, причём время расчёта практически не увеличилось. 4. РЕАЛИЗАЦИЯ ЧИСЛЕННЫХ ВЫЧИСЛЕНИЙ И ПОЛУЧЕНИЕ РЕЗУЛЬТАТОВ Для численного интегрирования систем дифференциальных уравнений полученных в пункте 2 данной работы использовали метод Кутта-Мерсона.

Данный метод применяется при анализе цепей с вентильными элементами, когда вентильные элементы рассматриваются как идеальные, а исследуемая электромеханическая система содержит такие элементы. Нижеприведенная программа рассчитывает ток, магнитную индукцию, высоту груза над опорой и скорости ее перемещения.

Также данная программа строит графики зависимостей этих величин от времени. При запуске программы ЭВМ предлагает пользователю выбрать рассчитываемую величину и указать диапазон значений в пределах которых будет изменяться выбранная величина. По окончанию работы программа выводит график зависимости выбранной величины от времени. Программу следует запускать столько раз, сколько зависимостей требуется получить.

Графики тока, индукции, скорости и высоты в зависимости от времени приведены на рис. 4.1 4.4. Также с помощью данной программы построили графики зависимости скорости в момент удара об опору от Н и Хо рис.4.5. и 4.6. и определили допустимых значений Н и Хо на уровне 1/4V. Получили диапазоны: по Н – от 18,2 до 22,4 мм; по Хо – от 13,2 до 17,7 мм. Текст программы представлен ниже. Блок схема изображена на рис.4.7. Основные переменные программы и их назначение приведены в таблице 4.1. Таблица 4.1. Таблица идентификаторов.

Блок-схема программы.