рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Гидростатика. Равновесие жидкостей и газов

Гидростатика. Равновесие жидкостей и газов - раздел Физика, Механика жидкости и газа Гидростатика. Равновесие Жидкостей И Газов. Гидростатика – Наиболее Простой Р...

Гидростатика. Равновесие жидкостей и газов. Гидростатика – наиболее простой раздел гидроаэромеханики, который исследует ситуации, когда движение отсутствует или скорость пренебрежимо мала. Гидростатика позволяет понять некоторые свойства такой важной гидродинамической величины, как давление. Давление на опору оказывают и твёрдые, и сыпучие вещества, но оно отличается от гидростатического. Давление твёрдого тела определяется его весом, давление жидкости – её глубиной.

Сила давления р на дно сосуда не зависит от его формы, а определяется только уровнем налитой в сосуд жидкости в соответствии с гидростатической формулой: p = ро + рgh где р – плотность жидкости, g – ускорение свободного падения, h – глубина погружения, ро – атмосферное давление. Сыпучие тела, подобно жидкости и газу, могут оказывать давление на боковую поверхность, но для такого давления не выполняется закон Паскаля, утверждающий, что давление в любом месте покоящейся жидкости ил газа по всем направлениям одинаково, причём давление одинаково передаётся по всему объёму жидкости или газа. В законе Паскаля вес жидкости или газа не учитывается.

К основным законам гидростатики, помимо закона Паскаля и гидростатической формулы, можно отнести закон Архимеда: на погружённое в жидкость или газ тело действует выталкивающая сила, равная по величине весу вытесненной жидкости (или газа), направленная против силы тяготения и приложенная к центру тяжести вытесненного объёма. Закон Архимеда и гидростатическую формулу можно вывести, используя стандартный для механики приём, иногда называемый правилом РОЗУ. РОЗУ это сокращёние до начальных букв алгоритма – РАЗРЕЖЕМ, ОТБРОСИМ, ЗАМЕНИМ, УРАВНОВЕСИМ. Например, с помощью алгоритма РОЗУ, закон Архимеда выводится так: Если погружённое в жидкость тело заменить такой же жидкостью, то получиться состояние равновесия – на поверхность тела действует сила давления жидкости, которая уравновешивает вес жидкости внутри поверхности.

Движение жидкостей и газов.

Движение жидкостей и газов, как и все другие виды движения, рассматриваемые в механике, можно полностью охарактеризовать, оперируя единицами измерения длины, времени и силы. Так, диаметр парашюта можно измерять в метрах, время снижения, скажем, на 100 метров – в секундах, а вес груза – в ньютонах. Точно так же входное сечение насоса можно измерять в квадратных метрах, объемный расход среды – в кубических метрах в секунду, а мощность – в ньютон-метрах (джоулях) в секунду.

Существует много способов измерения таких характеристик течения с использованием различных – механических и электрических – эквивалентов линейки, часов и пружинных весов. Например, скорость жидкостей и газов можно оценивать по числу оборотов в единицу времени проградуированной крыльчатки (гидрометрическая вертушка и анемометр) или по изменению электросопротивления нагреваемой проходящим током проволоки (проволочный термоанемометр); давление можно определять по вызываемому им отклонению изогнутой трубки или мембраны (манометр Бурдона и барометр-анероид) либо по току, генерируемому пьезокристаллом.

Прогнозирование характеристик течения. Если бы такие измерения движения жидкостей и газов были единственным занятием гидроаэромеханики, это была бы дисциплина довольно узкого профиля. Гораздо более важное значение, чем измерение, имеет точное прогнозирование характеристик течения при заранее известных или предполагаемых условиях.

Очевидно, что недостаточно уметь просто измерить пропускную способность построенного водослива, – нужно сначала надежно спроектировать водослив, рассчитанный на максимально возможный поток; точно так же измерить лагом скорость судна в плавании проще, чем заранее указать мощность двигателей, которые потребуются новому судну для поддержания заданной крейсерской скорости; напечатать в газете скорость ветра и атмосферное давление, измеренные вчера, гораздо легче, чем предсказать погодные условия на завтрашний день. Короче говоря, истинный предмет гидроаэромеханики – установление соотношений между различными характеристиками течения, позволяющих определить любую из них, коль скоро заданы другие характеристики, от которых она зависит.

Уравнение неразрывности. Хотя гидроаэродинамика основана на трёх хорошо известных в механике законах сохранения массы, импульса и энергии, формулировки этих законов в ней выглядят сложнее. Например, обычное определение закона сохранения массы гласит, что масса системы тел остаётся неизменной.

Для жидкости, текущей в трубе, этот закон используется в форме, называемой уравнением неразрывности. Уравнение неразрывности - соотношение между скоростью течения, объемным расходом среды и расстоянием между линиями тока. Это уравнение выражает один из основных законов гидроаэромеханики, согласно которому объемный расход во всякой трубке тока, ограниченной соседними линиями тока, должен быть в любой момент времени одинаков во всех ее поперечных сечениях.

Поскольку объемный расход Q равен произведению скорости текущей среды V на площадь A поперечного сечения трубки тока, уравнение неразрывности имеет следующий вид: Q = V1A1 = V2A2 или же vS = const ( v – скорость жидкости, S – площадь сечения трубы, по которой течёт жидкость. Смысл – сколько воды вливается – столько и должно вылиться, если условия течения неизменны). Поэтому там, где сечение велико и линии тока разрежены, скорость должна быть мала, и наоборот. (Все три части этого двойного равенства должны выражаться в одной и той же системе единиц.

Так, если величина Q выражена в м3/с, то скорость V должна выражаться в м/с, а площадь A – в м2.) Уравнение Бернулли. Одно из важнейших уравнений гидромеханики было получено в 1738 году швейцарским учёным Даниилом Бернулли. Ему впервые удалось описать движение несжимаемой идеальной жидкости (силы трения между элементами идеальной жидкости, а также между идеальной жидкостью и стенками сосуда отсутствуют). Уравнение Бернулли имеет вид: р + рv2 + pgh = const. 2 где р – давление жидкости, р – её плотность, V – скорость движения, g – ускорение свободного падения, h – высота, на которой находится элемент жидкости.

Согласно уравнению Бернулли, в случае установившегося течения, для которого не имеют существенного значения все другие характеристики текущей среды, кроме плотности (удельного веса), полный напор одинаков во всех поперечных сечениях трубки тока. Если к отверстию в стенке трубы присоединить манометрическую трубку, то жидкость в такой трубке поднимется на высоту, равную гидростатическому напору.

Если манометрическую трубку выставить навстречу потоку, то жидкость в манометре поднимется на дополнительную высоту, равную скоростному напору. Трубка, имеющая одновременно торцевое и боковые манометрические отверстия, называется трубкой Пито и используется для определения скорости течения по измеренному скоростному напору. Трубки Пито входят в комплект измерительного оборудования всех самолетов, а также широко применяются для измерений скорости течения в трубопроводах, вентиляционных воздуховодах, в аэро- и гидродинамических трубах.

Если скорость течения равна нулю (т.е. среда не движется), то уравнение Бернулли сводится к простому уравнению гидростатики. Согласно этому уравнению, увеличению высоты в неподвижной среде жидкости или газа соответствует равное уменьшение гидростатического напора. Поэтому давление в любой точке неподвижной жидкости равно глубине этой точки под свободной поверхностью, умноженной на удельный вес жидкости.

На основе этого соотношения вычисляется давление жидкости на стенки резервуаров, а также проводится анализ плавучести и остойчивости морских и речных судов. В тех случаях, когда скорость течения отлична от нуля, уравнение Бернулли совместно с уравнениями неразрывности и закона сохранения количества движения позволяет решать практически важные задачи – о расходе среды, текущей через измерительные диафрагмы, поверх измерительных и водосбросных водосливов и под затворы шлюзовых галерей; о траектории струи жидкости; о форме, скорости и силе волн, действующих на суда и волноломы.

Хотя в таких задачах обычно рассматривается течение воды под атмосферным слоем воздуха, аналогичные процессы гравитационного характера имеют место в случае течения более холодной (и, следовательно, более плотной) воды под более теплой, как и других жидкостей и газов разной плотности. Таким образом, водным потокам в реках аналогичны океанские течения и ветры, поскольку все гравитационные явления подчиняются одним и тем же законам гидроаэромеханики.

– Конец работы –

Эта тема принадлежит разделу:

Механика жидкости и газа

Два физических подхода – макроскопический (термодинамический) и микроскопический (молекулярно-кинетический) – дополнили друг друга. Идея о том, что вещество состоит из молекул, а те, в свою очередь, из атомов… Казалось, на основе кинетической теории, легко можно определить свойства газов, поскольку достаточно знать свойства…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Гидростатика. Равновесие жидкостей и газов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Законы механики сплошной среды
Законы механики сплошной среды. Механика сплошной среды основывается на трёх главных законах: 1. Сохранение массы (сохранение импульса) 2. Сохранение энергии 3. Второй закон Ньютона (изменение коли

Закон сохранения момента импульса
Закон сохранения момента импульса. Если понятие импульса в классической механике характеризует поступательное движение тел, момент импульса вводится для характеристики вращения и является следствие

Гравитационное моделирование
Гравитационное моделирование. Число Фруда. Хотя многие задачи такого рода решаются с приемлемой точностью, существует много других сложных задач, аналитическое решение которых пока невозможно. Тем

Гидродинамика Эйлера и Навье-Стокса
Гидродинамика Эйлера и Навье-Стокса. Выводя дифференциальное уравнение движения идеальной жидкости, Леонард Эйлер полагал, что силы, действующие на любую поверхность в ней, так же как и в не

Влияние вязкости на картину течения
Влияние вязкости на картину течения. Вязкость жидкости и газа обычно существенна только при относительно малых скоростях, поэтому гидродинамика Эйлера – это частный предельный случай больших

Турбулентное течение в трубах
Турбулентное течение в трубах. Течение вязкой жидкости вдоль границы может оказаться неустойчивым по отношению к малым возмущениям, если число Рейнольдса превысит некоторое значение. Так, например,

Явления в пограничном слое
Явления в пограничном слое. В случае течения указанного вида по длинной трубе влияние стенок на характер течения распространяется и на центральную часть трубы. В случае же обтекания тела сре

Вихревые колебания
Вихревые колебания. В случае удлиненных тел, скажем цилиндрических, закономерности сопротивления среды оказываются примерно такими же, как и для сфер, но, кроме того, происходят поперечные к

Плоская поверхность
Плоская поверхность. Сходную поперечную силу отрыв потока вызывает в случае плоской поверхности, наклоненной, подобно воздушному змею, относительно направления течения, но в этом случае боко

Поверхности другой формы
Поверхности другой формы. Поверхности, создающие подъемную силу, используются в конструкциях крыла самолетов и других скоростных судов; на основе тех же принципов проектируются лопасти воздушных и

Аналогии между течением жидкости и газа
Аналогии между течением жидкости и газа. Тесная аналогия между процессами образования волн «маховского» и «фрудовского» типов дает возможность исследователям, работающим в обоих этих направлениях,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги