МЕТОДИКА ИЗМЕРЕНИЯ И ЭКСПРИМЕНТАЛЬНАЯ УСТАНОВКА

МЕТОДИКА ИЗМЕРЕНИЯ И ЭКСПРИМЕНТАЛЬНАЯ УСТАНОВКА. Экспериментальная установка, методика проведения измерений, анализ полученных данных.

Нами проводилось исследование распределения температуры в факеле при температуре окружающей среды 20º С и давлении 768 мм.рт.ст. вертикально стоящей горелки. В качестве горючего используется газ пропан-бутан, окислитель – воздух.

Установка заземлена. Достижение максимальной температуры для данной горелки возможно при оптимальном соотношении для нее подачи окислителя и горючего. Смешивание компонентов происходит в рабочем теле горелки, таким образом в сопло поступает приготовленная смесь исходных компонентов. Подача воздуха регулируется увеличением зазора диффузора горелки, обеспечивая подсос воздуха в рабочий объем горелки. Возможность регулировки таким образом достаточно ограничено и осуществляется в основном изменением подачи горючего (газ) в рабочий объем.

Получаемое пламя на протяжении значительного удаления от сопла стабильно и осесимметрично. Это разрешает нам применять термоэлектрические методы определения температур. В качестве термоэлектрического датчика применяется хромель-алюмеливая дифференциальная термопара. Рабочий спай термопары, помещаемый в пламя крепится на электроизолирующей тефлоновой подставке, закрепленной на препаратоводителе, конструкция которого позволяет перемещение в горизонтальном и вертикальном направлениях, что дает возможность измерить температуру в любой точке факела.

Регистрирование т.э.д.с. осуществляется с помощью осциллографа С1-112А. Рис.4. Схема экспериментальной установки Распределение температур в факеле исследуемой горелки Рис.5. Экспериментальное распределение температур в факеле исследуемой горелки. Таблица 1. Из газового баллона (13) газ (пропан-бутан) через редуктор (12) по трубопроводу подавался на игольчатый клапан (9), с помощью которого регулировалась подача газа. После чего газ пройдя через ротаметр (11) и пламегаситель (10) попадал в горелку.

Пламегаситель использовался с целью безопасности, для предотвращения эффекта попадания пламени в трубопровод и возгорания газового баллона. Рабочим телом в пламегасителе являлась металлическая стружка (в частности алюминий) с большим коэффициентом теплопроводности. Конструкция горелки допускала регулировку (14) подачи окислителя (воздуха) в рабочий объем, тем самым достигалось стационарность пламени.

Хромель-алюмелевая рабочая термопара (4) устанавливалась на препаратоводитель (1), который позволял перемещать рабочий спай термопары по вертикали и горизонтали с точностью 0,05 см. Второй спай термопары (5) находился при 0º С, чтобы исключить влияние температуры окружающей среды. Для того чтобы определить структуру факела нами была измерено распределение температур в четырех горизонтальных сечениях.

Четко прослеживается наличие малого конуса в пламени горелки. Сечения выбирались следующим образом: 1-е сечение – у сопла горелки, 2-е сечение – на расстоянии 1/3 от общей длины малого конуса, 3-е сечение - на расстоянии 2/3 от общей длины малого конуса, 4-е сечение – у вершины малого конуса. Анализируя полученные результаты можно сказать следующее: структура полученного факела аналогична найденной в работе [6]. Геометрически факел представляет собой сужающуюся вверх осесимметричную структуру.

Внутри большого конуса светло-синего цвета наблюдается малый конус насыщенного голубого цвета. У вершины малого (внутреннего) конуса располагается зона желтого свечения, соответствующая найденной в работе [6], разложению тяжелых углеводородов и образованию конденсированной дисперсной фазы углерода (сажи). Факел стабилен приблизительно до зоны желтого свечения, располагающейся на расстоянии ¾ длины факела начиная от торца сопла. Данная нестабильность обусловила невозможность получения точных значений температур верхней четверти факела.

По оси факела температура возрастает по мере удаления от торца сопла и достигает максимума у нижнего края зоны желтого свечения. Далее наши измерения регистрируют падение температуры пламени, таким образом данные по указанной выше причине (нестабильности) мы привести не можем. Нам представляется, что как и в работе [6], механизм горения у торца сопла носит диффузионный характер. По мере продвижения по факелу, перемешивание окислителя и горючего улучшается и определенную роль начинает играть кинетическая составляющая, что и обуславливает повышение температуры у края зоны желтого свечения.

Что касается постоянства температуры внешнего края большого конуса, то она по нашему мнению определяется диффузией окислителя из внешнего воздуха в зону реакции. Таким образом полученная структура факела по нашему мнению обусловлена режимом диффузионного горения горючего (пропан-бутановая смесь применяемая в бытовой технике и окислителя воздуха) с постепенным увеличением кинетической составляющей (и температуры), которая достигает максимального значения у нижнего края зоны желтого свечения.

ГЛАВА 3. ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ БЕСКОНТАКТНЫХ ОПТИЧЕСКИХ МЕТОДОВ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ДЛЯ ИССЛЕДУЕМОЙ ГОРЕЛКИ. Полученные экспериментальные результаты хорошо описывают распределение температур в факеле стационарного пламени. В случае быстропротекающих процессов или нестационарных пламен необходимо получить более высокое временное и пространственное разрешение.

Это может быть достигнуто с помощью применения оптических методов определения температур. Таким образом нами для получения распределения температур в верхней части пламени предполагается использовать методику предложенную в [8]. Изготовленный в указанной работе прибор и предложенная методика разрешает регистрировать излучение из локального объема факела одновременно на четырех длинах волн. Это с одной стороны разрешает избежать ошибок при случайном попадании одной из рабочих длин волн на длину волны соответствующей линии излучения элемента или в полосу излучения молекулярного спектра.

Таким образом применение указанной методики позволит нам в дальнейшем регистрировать быстропротекающие процессы. И в случае необходимости совместив одну из рабочих длин волн с характеристической линией излучения исследуемой реакции сделать