рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Радиолокация Луны и планет

Радиолокация Луны и планет - Реферат, раздел Физика, Радиотехника и космос - история и современность Радиолокация Луны И Планет. Еще В 1928 Году, Когда Большинство Радиолю...

Радиолокация Луны и планет.

Еще в 1928 году, когда большинство радиолюбителей пользовались примитивными детекторными приемни¬ками, советские ученые Л. И. Мандельштам и Н. Д. Папалекси рассматривали вопрос о посылке ра¬диосигнала на Луну и приеме па Земле радиоэха. Тогда это была только смелая мечта, далеко опере¬жавшая действительность. Но такова характерная черта больших ученых—их мысль опережает факты и видит то, что становится реальностью лишь в будущем. В годы второй мировой войны Л. И. Мандель¬штам и Н. Д. Папалекси снова вернулись к занимав¬шей их идее. Теперь настали другие времена.

Радио¬локация прочно вошла в практику военной жизни, и радиолокаторы уверенно нащупывали невидимые цели. Советские ученые на основе новых данных подсчи¬тали, какова должна быть мощность радиолокатора и другие его качества, чтобы с его помощью можно было осуществить радиолокацию Луны. Научная цен¬ность такого эксперимента была вне сомнений. Ведь до сих пор, чтобы определить расстояние до Луны, приходилось наблюдать ее положение среди звезд од¬новременно из двух достаточно удаленных друг от друга обсерваторий. Радиолокация решила бы ту же задачу при наблюдениях из одного пункта.

Учитывая быстрый прогресс радиотехники, можно было ожи¬дать, что радиолокационные измерения астрономиче¬ских расстояний дадут результаты гораздо более точ¬ные, чем те, которые были получены в прошлом. Трудности, однако, оказались огромными. Расчеты показали, что при прочих равных условиях мощность отраженного сигнала убывает обратно пропорциональ¬но четвертой степени расстояния до цели. Получалось, что лунный радиолокатор должен обладать примерно в тысячу раз большей чувствительностью, чем обыч¬ная радиолокационная станция береговой обороны, обнаруживавшая в те годы самолет неприятеля с рас¬стояния в двести километров.

И все же проект казался довольно убедительным, и уверенность его авторов в успехе вскоре была оп¬равдана фактами. В начале 1946 года почти одновременно, но с раз¬личными установками, венгерские и американские радиофизики осуществили радиолокацию Луны. На Луну посылались мощные импульсы радиоволн длиной 2,7 м. Каждый импульс имел продолжитель¬ность 0,25 секунды, причем пауза между импульсами составляла 4 секунды.

Антенна радиолокатора была еще весьма несовершенна: она могла поворачиваться только вокруг вертикальной оси. Поэтому исследова¬ния велись лишь при восходе или заходе Луны, когда последняя находилась вблизи горизонта. Приемное устройство радиолокатора уверенно за¬фиксировало слабый отраженный сигнал, лунное ра¬диоэхо.

Путь до Луны и обратно радиоволны совершили всего за 2,6 сек, что, впрочем, при их невообразимо большой скорости не должно вызывать удивления. Точность этого первого радиоизмерения из-за несовер¬шенства аппаратуры была еще очень низка, но все же совпадение с известными ранее данными было весьма хорошее. Позже радиолокация Луны была повторена на многих обсерваториях, и с каждым разом со все боль¬шей точностью и, конечно, с большей легкостью.

Большие возможности радиолокации обнаружи¬лись при наблюдении так называемой либрации Луны. Под этим термином астрономы понимают своеобраз¬ные «покачивания» лунного шара, вызванные отчасти геометрическими причинами (условиями видимости), отчасти причинами физического характера. Благодаря либрации земной наблюдатель видит не половину, а около 60% лунного шара. Значит, либрация позволя¬ет нам иногда «заглядывать» за край видимого лун¬ного диска и наблюдать пограничные районы обрат¬ной стороны Луны. При «покачивании», или либрации, Луны один ее край приближается к наблюдателю, а другой уда¬ляется.

Скорость этого движения очень мала — по¬рядка 1м/сек, что меньше даже скорости пешехода. Но радиолокатор способен, оказывается, обнаружить и такие смещения. Радиолокатор посылает на Луну волны опре¬деленной длины. Естественно, что и отраженный радиосигнал будет обладать той же длиной волны. Можно сказать, что радиоспектр отраженного сигнала представляет собой одну определенную «радиолинию». Если бы Луна не «покачивалась» относительно земного наблюдения, радиоспектры посланного и отраженного импульса были бы совершенно одинаковыми.

На самом же деле разница, хотя и небольшая, все же есть. Радиоволна, отразившаяся от того края Луны, который приближается к земному наблюдателю, по принципу Доплера будет иметь несколько большую частоту и, следовательно, меньшую длину, чем радиоволна, посланная на Луну. Для другого удаляющегося края Луны должен наблюдаться противоположный эффект.

В результате «радиолиния» в радиоспектре отраженного импульса будет более широкой, растянутой, чем «радиолиния» посланного импульса. По величине расширения можно вычислить скорость удаления краев Луны. Этим же методом можно определить периоды вращения планет вокруг оси и скорости их движения по орбите. Раньше требовались многолетние высокоточные оптические наблюдения Луны, чтобы затем после долгих вычислений получить величину либрации.

Радиолокаторы решили эту задачу, так сказать, непосредственно и несравненно быстрее. При каждом измерении пользуются некоторым эталоном — меркой, употребляемой как единица длины. Для измерений на земной поверхности таким эталоном служит метр. Для астрономии расстояние ни метр, ни даже километр не являются вполне подходящей единицей масштаба — слишком уж велики расстояния между небесными телами. Поэтому астрономы употребляют вместо метра гораздо более крупную единицу длины. Называется она «астрономической единицей» ( сокращенно «а.е.»). По определению астрономическая единица равна среднему расстоянию от Земли до Солнца.

Чтобы связать астрономические измерения длины с чисто земными мерками расстояний, астрономическую единицу в конечном счете сопоставляют с метром — выражают астрономическую единицу в метрах или километрах. Во времена Иоганна Кеплера (17 век) величину астрономической единицы еще не знали — она впервые была найдена только век спустя. Не были известны и расстояния от Солнца до других планет Солнечной системы.

Тем не менее, третий закон Кеплера гласит, что «квадраты времен обращения планет вокруг Солнца относятся между собой как кубы их средних расстояний до Солнца». Каким же образом, не зная расстояний планет до Солнца, Кеплер мог открыть этот важный закон? Весь секрет, оказывается, в том, что не зная абсолютных (выраженных в километрах) расстояний планет до Солнца, можно сравнительно просто из наблюдений вычислить их относительные расстояния, то есть узнать, во сколько раз одна планета дальше от Солнца, чем другая.

Зная же относительные расстояния планет от Солнца, можно сделать чертеж Солнечной системы. В не будет хватать только одного — масштаба. Если бы можно было указать, чему равно расстояние в километрах между любыми двумя телами на чертеже, то, очевидно, этим самым был бы введен масштаб чертежа, и в единицах данного масштаба сразу можно было бы получить расстояние всех планет до Солнца. До применения радиолокации среднее расстояние от Земли до Солнца, то есть астрономическая единица, считалось равным 149504000 км. Эта величина измерена не абсолютно точно, а приближенно с ошибкой в 17000 км в ту или другую сторону.

Некоторых такая ошибка может ужаснуть. С этой точки зрения расстояние от Земли до Солнца измерено очень точно — относительная ошибка не превышает сотых долей процента. Но постоянное стремление к повышению точности характерно для любой точной науки. Поэтому можно понять астрономов, когда они снова и снова уточняют масштаб Солнечной системы и стремятся применить самые совершенные методы для измерения астрономической единицы.

Вот тут-то и приходит на помощь радиоастрономия. Совершенно очевидно, что радиолокация планет из-за их удаленности несравненно труднее радиоло¬кации Луны. Не забудьте, что мощность радиоэха падает обратно пропорционально четвертой степени расстояния, то есть очень сильно. Но современная радиотехника преодолела и эти трудности. В феврале 1958 года американскими учеными впервые проведена радиолокация ближайшей из пла¬нет—Венеры, а в сентябре того же года поймано радиоэхо от Солнца.

Во время радиолокации Венера находилась в 43 миллионах километров от Земли. Значит, радиоволне требовалось примерно 5 минут для путешествия «туда и обратно». Сигналы подавались в течение 4 минут 30 секунд, а следующие 5 минут «подслушивалось» радиоэхо. Длительная посылка радиосигналов была вызвана необходимостью—при коротком импульсе единичное отражение от Венеры не могло наблю¬даться.

Даже с такими ухищрениями разобраться в при¬нятых радиосигналах было нелегко. Крайне слабые, отраженные от Венеры радиоволны маскировались собственными шумами приемной аппаратуры. Только электронные вычислительные машины после почти годовой обработки наблюдений наконец доказали, что радиолокатор все-таки принял очень слабое ра¬диоэхо от Венеры. После первого успеха радиолока¬ция Венеры была повторена еще несколько раз. Радиоэхо от Венеры получилось в 10 миллионов раз более слабым, чем радиоэхо от Луны. Но радио¬локаторы его все-таки поймали—таков прогресс ра¬диотехники за какие-нибудь двенадцать лет. Гораздо более уверенно и с лучшими результата¬ми провели радиолокацию Венеры в апреле 1961 года советские ученые.

По их данным удалось уточнить вели¬чину астрономической единицы. Оказалось, что Солн¬це на 95 300 км дальше от Земли, чем думали до тех пор, и астрономическая единица равна 14959930001. Ошибка в этом измерении не превышает 2000 км в ту или другую сторону, что по отношению к измеренному расстоянию составляет всего лишь тысячные доли процента! Теперь величину астрономической единицы знают еще точнее, что позволяет с меньшими ошибками вычислять траектории космических ракет, а это имеет большое значение для межпланетных путешествий.

Солнце для радиолокатора гораздо более крупная цель, чем Венера. Но зато Солнце—само мощный источник космических радиоволн. Чтобы эти радио¬волны не «заглушили» радиоэхо, отраженный от Солнца радиосигнал должен быть по крайней мере в сто раз сильнее сигнала, отраженного от Венеры.

Радиолокация Солнца впервые проводилась так. Передатчик включался с интервалами в 30 секунд в продолжение 15 минут. Наблюдения начались в сентябре 1958 года и были продолжены весной 1959 года. При обработке также пришлось прибегнуть к помощи электронных вычислительных машин. В хоро¬шем согласии с предварительными расчетами получи¬лось, что радиосигнал, посланный с Земли, отразился от тех слоев солнечной короны, которые находятся на расстоянии 1,7 радиуса Солнца от его поверхности.

Еще в 1959 году радиолокация Меркурия показа¬ла, что сутки на этой планете близки к 59 земным суткам, то есть Меркурий не обращен всегда к Солн¬цу одной стороной, как считалось до этого. Радиоло¬каторы выяснили также, что сутки на Венере в 243 раза длиннее земных, причем Венера вращается в направлении с востока на запад, то есть в сторону, обратную вращению всех остальных планет. Радиолуч сквозь облака Венеры «прощупал» ее рельеф и установил существование на Венере крате¬ров, подобных лунным.

Радиолокация уточнила дан¬ные о рельефе Марса. Но самое, пожалуй, удивитель¬ное было достигнуто в метеорной астрономии. 8.

– Конец работы –

Эта тема принадлежит разделу:

Радиотехника и космос - история и современность

Нормальный ход радиопередачи на волне 14,7 м нарушен шумами, интенсивность которых не остается постоянной. Постепенно выясняется загадочная… Странный период в точности равен продолжительности звездных суток в единицах… Янский пытается отыскать объект, вызывающий радиопомехи. И, несмотря на совершенство радиоаппаратуры, виновник…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Радиолокация Луны и планет

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Прозрачна ли атмосфера
Прозрачна ли атмосфера. Трудно поверить, что воздух почти не прозрачен, что до наших глаз доходит лишь ничтожная доля всех излучений, существующих в природе. Взгляните на рисунок 1. Он иллюстрирует

Радиотелескопы и рефлекторы
Радиотелескопы и рефлекторы. Вспомним, как устроен телескоп-рефлектор. Лучи, посылаемые небесным телом, попадают на вогнутое параболическое зеркало и, отражаясь от его поверхности, собираетс

Борьба с помехами
Борьба с помехами. Нелегко создать сплошное металлическое зеркало с поперечником в несколько десятков метров, да еще установить так, чтобы, перемещая зеркало с удивительной плавностью, его можно бы

О зоркости радиотелескопов
О зоркости радиотелескопов. Благодаря сложным оптическим явлениям лучи от звезды, уловленные телескопом, сходятся не в одной точке (фокусе телескопа), а в некоторой небольшой области пространства в

Метеоры наблюдают днем
Метеоры наблюдают днем. Звездная ночь. В невообразимой дали тихо сияют ты¬сячи солнц. И вдруг как будто одна из звезд сорва¬лась и полетела, оставляя на небе узенькую светя¬щуюся полоску. Все явлен

В поисках внеземных цивилизаций
В поисках внеземных цивилизаций. Вряд ли есть другая научная проблема, которая вызывала бы такой жгучий интерес и такие жаркие споры, как проблема связи с внеземными цивилиза¬циями. Литерату

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги