Туннельные эффекты

Туннельные эффекты. Туннельный эффект известен в физики давно.

Это один из основных квантово- механических эффектов и разобраться в нем можно только подходя с помощи квантового описания происходящих событий. Представьте себе горизонтальный желоб, по которому без трения скользит массивный шарик. Что произойдет, если шарик встретит на своем пути горку - участок с наклоном? По оси абсцисс отложена координата шарика х, а по оси ординат - его потенциальная энергия. Теряя скорость, шарик покатиться в гору. Если его начальная кинетическая энергия была больше потенциальной максимальной энергии, то она благополучно перевалит через вершину горки шарик не сможет.

На склоне найдется такая точка поворота, где вся кинетическая энергия перейдет в потенциальную, и в соответствии с законом сохранения энергии шарик остановиться, а затем покатиться обратно. Шансов проникнуть за барьер горку у него абсолютно никаких. А вот квантовая частица - электрон, на пути которого возникает преграда, в аналогичной ситуации все же как-то умудряется просочиться через барьер.

Попытаемся внести в этот абстрактный о до некоторой степени противоречащий нашему здравому смыслу ввести хотя бы некоторый элемент наглядности. Невозможность проникновения частицы в нашем случае шарика в область за барьером можно уподобить известному в оптике явлению полного внутреннего отражения. Согласно геометрической оптике лучи, подающие под углом больше предельного не проникают не проникают из среда оптически более плотной, в среду, оптически менее плотную.

Однако более подробное рассмотрение этого явления, основанная на законах не геометрической, а волновой оптике, приводит к возможности проникновения света во вторую среду. При этом если оптически более плотная среда представляет собой тонкую пластину, то световая волна проходит сквозь неё, несмотря на то что угол падения больше предельного. А теперь вспомним о двойственной природе электрона. Частица в квантовой механике - это не совсем обычный шарик, пусть даже сверхмалых размеров, она даже обладает и волновыми двойствами, а волна, как мы выяснили, все же слегка проникает в запретную область, она как бы проверяет возможность проникновения в эту среду.

При этом амплитуда затухает и тем быстрее, или говорят иначе, чем выше энергетический барьер. Выходит, что какова бы не была энергия электрона и как бы ни был высок энергетический барьер, всегда есть отличная от нуля вероятность найти электрон внутри барьера, а если барьер не очень гладок, то и за барьером, по другую сторону.

Тогда на обратной стороне барьера появляется конечная амплитуда, а согласно законам квантовой механики квадрат амплитуды и определяет вероятность того, что электрон будет здесь найден, если провести соответствующие эксперименты. При этом электроны пробивают только строго горизонтальные туннели, на выходе из которых полная энергия частиц точно такая же, как и на входе. Тунелирование возможно только в том случае, если уровни, на которые переходят электроны, не заняты, и то в противном случае запрет Паули. Итак, не имея достаточной энергии, чтобы перескочить через преграду, как бы порывает туннель в его недрах.

Вероятность такого перехода, или как говорят физики, прозрачность энергии зависит от энергии электрона и очень сильно от ширины и высоты барьера. Туннельный эффект становиться наблюдаем лишь при толщинах барьеров, меньших 100 Е, так что у применяемых электрических изоляционных покрытий громадный запас прочности в отношении туннельного тока. 3.6