Микроскопическая теория сверхпроводимости Бардина - Купера - Шриффера БКШ и Боголюбова

Микроскопическая теория сверхпроводимости Бардина - Купера - Шриффера БКШ и Боголюбова. Радость видеть и понимать есть самый прекрасный дар природы А. Эйнштейн. 4.1 Теория БКШ. Многие ученые разных стран внесли вклад в создании теории сверхпроводимости. Первым из них был советский ученый Л.Д. Ландау. Он первым сопоставил два странных явления - сверхпроводимость и сверхтекучесть электронной жидкости.

В 1950г. В.Л. Гинзбург и Л.Д. Ландау предложили феноменологическую теорию сверхпроводимости, позволившую рассмотреть ряд существенных свойств сверхпроводников, описать их поведение во внешнем поле. Теория эта была обоснована Л.П. Горьковым, разработавшим метод исследования сверхпроводящего состояния. Следующий шаг был сделан почти одновременно советским физиком академиком Н.Н. Боголюбовым и американским физиком Бардиным, Купером и Шриффером.

Американские ученые успели несколько раньше поставить последнюю точку. Сверхпроводимость, как оказалось, проявляется в тех случаях, когда электроны в металле группируются в пары, взаимодействующие через кристаллическую решетку. Она тесно связана между собой, так что разорвать пару и разобщить электроны через трудные мощные связи позволяют электронам двигаться без всякого сопротивления сквозь решетку кристалла. Исходя из этих представлений Бардин, Купер и Шриффер в 1957г.построили долгожданную микроскопическую теория сверхпроводимости, за которую они в 1972г.были удостоены нобелевской премии. Эта теория, известная сегодня под названием теория БКШ , не только позволила с уверенностью сказать, что механизм сверхпроводимости действительно ясен, но и впервые привела к установлению связи между критической температурой Тк и параметрами металлов. 4.2 Энергетическая щель. Связываясь, пара электронов как бы попадает в энергетическую яму. Для этого ей надо отдать некоторую энергию кристаллической решетки.

Отданная энергия называется энергией связи пары Ес. Следовательно, для перевода электронов из сверхпроводящего состояния в нормальное необходимо затратить энергию на разрыв пары не меньше энергии связи, то есть энергию Ес 2 на каждый электрон.

Энергетический спектр электронов в сверхпроводнике можно представить следующим образом все электронные уровни сдвигаются вниз по сравнению с уровнем Ферми на величину равную рис.17 . Если теперь в такой сверхпроводник попадет направленный электрон, он должен занять уровень 2 выше последнего из занятых спаренными электронами.

Туда же должны переходить электроны из разорванных пар. А вот энергетический промежуток от ЕF - до ЕF будет оставаться незанятым, говорят, что в энергетическом электронном спектре сверхпроводника имеется энергетическая щель величиной 2. Иными словами, нормальное состояние электронов в сверхпроводнике отделено от сверхпроводящего состояния энергетической щелью. Значение щели можно приближенно, зная критическую температуру Тr 2 3,5kТr. При критической температуре, равной примерно 20К, величина энергии 2 2,8 10-22 Дж 1,7 10-3 эВ. В большинстве случаев критическая температура Тк меньше 20К и величина энергетической щели соответствует 10к эВ. Надо сказать, что энергетическая щель в сверхпроводнике вовсе не постоянная величина.

Она зависит от температуры в магнитном поле. Уменьшение температуры приводит к уменьшению энергетической щели и при критической температуре она обращается в ноль. Это и понятно.

С увеличением температуры в сверхпроводнике появляется все больше фононов фонон - самые настоящие частицы, но не совсем равноправные в том смысле, что они способны существовать только внутри вещества, в пустоте фононов не может быть. Фонон квази частица. С энергией, равной величине энергии щели, или больше неё, и они разрушают все большее число пар, превращая их в нормальные электроны. Но чем меньше остается пар, тем меньше становиться их вклад притяжение, тем оно слабее, а значит, тем более узкой становиться энергетическая щель. Зависимость величины энергетической щели от температуры показана на рисунке 18. Сплошная кривая теоретическая точками указаны значения, полученные опытным путем.

Можно отметить исключительно хорошее согласие теории и эксперимента, которое подтверждает правильность основных положений современной теории. 4.3 Бесщелевая сверхпроводимость. В первые годы после создания теории БКШ наличие энергетической щели в электронном спектре считалось характерным признаком сверхпроводимости без энергетической щели - бесщелевая сверхпроводимость.

Как было впервые показано А.А. Абрикосовым и Л.П. Горьковым при введении магнитных примесей критическая температура эффектно уменьшается. Атомы магнитной примеси обладают спином, а значит спиновым магнитным моментом. При этом спины пары оказываются как бы в параллельном и антипараллельном магнитном поле примеси. С увеличением концентрации атомов, магнитной примеси в сверхпроводнике все большее число пар будет разрушаться, и в соответствии с этим ширина энергетической щели будет уменьшаться.

При некоторой концентрации n, равной 0,91nкр nкр - значение концентрации, при которой полностью исчезает сверхпроводящее состояние, энергетическая щель становиться равной нулю. Можно предположить, что появление бесщелевой сверхпроводимости связано с тем, что при взаимодействии с атомами примеси часть пар оказывается временно разорванными. Такому временному распаду пары соответствует появление локальных энергетических уровней в пределах самой энергетической щели. С ростом концентрации примесей щель все больше заполняется этими локальными уровнями до тех пор, пока не исчезнет совсем.

Существование электронов образовавшихся при разрыве пары, приводит к исчезновению энергетической щели, а оставшиеся куперовские пары обеспечивают равенство нулю электронного сопротивления. Мы приходим к выводу, что существование щели само по себе вовсе не является обязательным условием проявление сверхпроводящего состояния.

Тем более что бесщелевая сверхпроводимость, как оказалось явление не столь уж и редкое. Главное - это наличие связанного электронного состояния - куперовской пары. Именно это состояние может проявлять сверхпроводящие свойства и в отсутствии энергетической щели. Парные корреляции - писал один из создателей теории БКШ Шриффер на которых основана теория спаривания электронов, наиболее существенных для объяснения основных явлений наблюдаемых в сверхпроводящем состоянии. 5.