рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Фотокатализ и фотосенсибилизация

Фотокатализ и фотосенсибилизация - Реферат, раздел Физика, Современные проблемы квантовой физики Фотокатализ И Фотосенсибилизация. Специфической Особенностью Фотокаталитическ...

Фотокатализ и фотосенсибилизация. Специфической особенностью фотокаталитических процессов по сравнению с обычным темновым катализом является, с одной стороны, чувствительность химической системы к действию света и, с другой - возможность осуществления каталитических реакций превращения субстрата в продукт с положительным изменением свободной энергии системы AG 0. В связи с этим при разработке искусственных фотокаталитических систем разложения воды солнечным светом используют явления фотосенсибилизации и фотокатализа.

Фотосенсибилизация - это изменение спектральной области чувствительности химических соединений, происходящее вследствие процессов переноса энергии или электрона от веществ, называемых сенсибилизаторами, которые поглощают свет другой спектральной области обычно более длинноволновой. Фотокатализ - это явление индуцирования химических превращений при действии света -на системы, содержащие химические соединения -участники реакции и вещества, называемые фотокатализаторами, которые индуцируют при поглощении света химические превращения участников реакции, многократно вступая с ними в химические взаимодействия и регенерируя свой состав после каждого цикла промежуточных взаимодействий.

Следует отметить, что в чистом виде явление как фотокатализа, так и фотосенсибилизации встречается редко.

В большинстве фотокаталитических процессов одни и те же вещества выполняют функцию и фотосенсибилизатора и фотокатализатора.

Так, например, в фотокаталитическом процессе природного растительного фотосинтеза, приводящего в общем виде к восстановлению углекислого газа до органических соединений и окислению воды хлорофилл ХЛ выступает и фотосенсибилизатором и фотокатализатором. Более 90 хлорофилла растительной клетки входит в состав хлорофилл-белковых комплексов, выполняющих функцию фотосенсибилизатора S и обеспечивающих эффективное поглощение солнечного излучения в результате их электронного возбуждения S- -S . Такие комплексы играют роль своеобразной антенны для улавливания солнечного света, характеризующегося относительно низкой плотностью потока энергии на единицу поверхности средняя интенсивность падающего на поверхность Земли света в южных районах России составляет -2,2 10-2 ккал см2 с. Энергия электронного возбуждения антенных комплексов с эффективностью, близкой к 100 , передается димеру Р хлорофилла S Р-Р , входящему в состав реакционного центра и выполняющему функцию фотокатализатора суммарного процесса переноса электронов от воды к никотина-мидадениндинуклеотид фосфату NADP Восстановленная форма NADPH участвует в дальнейших темновых биохимических реакциях, приводящих к образованию органических соединений из углекислого газа. 2.4. БИОФОТОЛИЗ ВОДЫ Основные фотокаталитические процессы природного фотосинтеза растений, протекающие в реакционном центре и описываемые так называемой Z-схемой схема 3 с двумя фотосистемами ФС1 и ФС2, были подробно рассмотрены в 2 . В общем виде реакционный центр каждой фотосистемы содержит фотокатализаторы Р700 и Р680 на основе хлорофилла, первичные акцепторы А1, А2 и доноры D1, D2 электрона, цепь электронного транспорта ЦЭТ , соединяющую две фотосистемы, а также катализаторы образования О2 и NADPH. Первичные стадии фотосинтеза могут быть рассмотрены как своеобразный двухтактный электронный фотонасос, осуществляющий под действием двух квантов света перенос одного электрона от воды к NADP . Это определяет необходимость использования в суммарной реакции восьми квантов света для получения одной молекулы кислорода из воды. Такая не самая оптимальная с точки зрения энергетики восьмиквантовая схема преобразования солнечной энергии в химическую является результатом эволюционного развития процесса растительного фотосинтеза, первоначально зародившегося как бактериальный. В то же время природный фотосинтез характеризуется уникальной квантовой эффективностью первичных процессов переноса электрона между донорами и акцепторами в результате быстрых 10-10 с реакций с участием фотокатализаторов.

Это приводит как к эффективной регенерации фотокатализатора, так и высокому 90 КПД разделения зарядов, возникающих на доноре и акцепторе электрона фотосистемы после поглощения кванта света.

Выделение из растительных клеток хлоропластов с сохранением их фотосинтезирующих свойств открывает возможность использования уникального природного фотосинтетического аппарата для получения водорода из воды - биофотолиза воды. Задача сводится в первую очередь к организации в ФС1 каталитического процесса восстановления не NADP , а воды. Известно, что конечным акцептором электронов в ФС2 является железо-серный белок ферредоксин Фд, восстановленная форма которого в присутствии специальных катализаторов способна выделять водород из воды. Разработанные к настоящему времени модельные биохимические системы фотолиза воды на основе выделенных из растительных клеток хлоропластов схема 4 содержат два общих элемента электронтранспортную цепь ЦЭТ фотосинтеза и катализатор образования водорода, в качестве которого могут быть использованы как биологические гидрогеназа, так и неорганические коллоидная Pt катализаторы.

В то же время в качестве восстановителя воды может выступать как непосредственно ферредоксин, так и специально введенный в систему промежуточный переносчик электрона М, способный акцептировать электроны из электронтранспортной цепи хлоропластов и в дальнейшем каталитически восстанавливать воду схема 4 . Двухстадийный процесс разложения воды в последнем случае позволяет осуществить разделение водорода и кислорода, поскольку выделение газов происходит на разных стадиях.

Энергетическая эффективность преобразования солнечной энергии в химическую для разработанных в настоящее время модельных систем биофотолиза воды не превышает 0,2 , тогда как теоретическое предельное значение составляет -17 . Второй существенной проблемой является недостаточная стабильность разработанных биосистем фотолиза воды во времени до 30 дней. Решение этих проблем позволит перейти к созданию практически приемлемых устройств конверсии солнечной энергии в химическую на основе биокаталитических систем фотолиза воды. 2.5. ИСКУССТВЕННЫЕ ФОТОКАТАЛИТИЧЕСКИЕ СИСТЕМЫ РАЗЛОЖЕНИЯ ВОДЫ Созданный природой в ходе эволюции уникальный восьмиквантовый фотосинтетический аппарат, включающий две фотосистемы, объединенные сложной многоступенчатой электрон-транспортной цепью, обеспечивает не только окисление воды и восстановление NADP , но и синтез энергоемких соединений аденозинтрифосфата из аденозинди-фосфата и неорганического фосфата, которые в дальнейшем выполняют роль универсального источника энергии в клетке, обеспечивая протекание большинства биохимических процессов 1-3 . В связи с этим заманчивым представляется создание искусственных фотокаталитических систем, выполняющих узкоспециализированную функцию фоторазложение воды. При этом нет необходимости моделировать весь сложный механизм фотосинтеза, а следует использовать только основные принципы фотохимического преобразования солнечной энергии в химическую.

Поскольку выделение одной Молекулы кислорода требует разложения двух молекул воды, энергетические затраты на проведение одного каталитического цикла фоторазложения воды при комнатной температуре не могут быть меньше 113,4 ккал моль, что соответствует энергии квантов ультрафиолетового света К - 0,252 мкм, практически отсутствующих в спектре солнечного излучения 0,3-1,0 мкм, падающего на поверхность Земли. Это означает, что с точки зрения наиболее полного использования солнечного излучения, достигающего поверхности Земли, наиболее рациональной является четырех-квантовая схема процесса разложения воды, при котором каждый квант света используется для переноса одного электрона.

В этом случае пороговая длина волны света составляет 1,008 мкм, что соответствует красной границе солнечного излучения и как следствие этого обеспечивает максимальную эффективность преобразования солнечной энергии в химическую.

Таким образом, в отличие от природного фотосинтеза искусственные фотокаталитические системы разложения воды могли бы работать по принципу не двухтактного см. схему 3 , а однотактного фотонасоса.

В настоящее время разрабатываются два типа искусственных фотокаталитических систем полупроводниковая и молекулярная.

В первом случае в качестве фотокатализатора используются полупроводниковые материалы на основе халькогенидов, фосфидов и арсенидов переходных металлов. Поглощение кванта света приводит к переносу электрона между энергетическими уровнями твердого тела, называемыми зонами заполненной зоной и зоной проводимости. Образующиеся заряды - электрон е в зоне проводимости и положительно заряженная дырка р в заполненной зоне - растягиваются в разные стороны электрическим полем, существующим на границе полупроводник-раствор, и участвуют в дальнейших каталитических процессах восстановления и окисления воды в присутствии нанесенных на поверхность полупроводника катализаторов Pt и RuO2. Иммобилизация на поверхности полупроводника различных органических и неорганических красителей, выполняющих функцию фотосенсибилизатора S , позволяет обеспечивать -10 КПД преобразования солнечной энергии в химическую.

Основная проблема для практического применения таких систем - предотвращение фотокоррозии полупроводников и повышение стабильности систем во времени.

В молекулярных фотокаталитических системах разложения воды в качестве фотокатализатора, доноров и акцепторов электрона, участвующих в реакциях, используются индивидуальные химические соединения, удовлетворяющие некоторым требованиям.

Фотокатализаторы должны обеспечивать интенсивное поглощение солнечного излучения, иметь высокоэнергетические, долгоживущие возбужденные состояния ФК , способные участвовать в бимолекулярных реакциях переноса электрона, обладать высокой химической и фотохимической устойчивостью и эффективно регенерировать свою форму в результате взаимодействия с промежуточными акцепторами или донорами.

Наряду с фотохимической и химической устойчивостью основным требованием к промежуточным донорам и акцепторам электрона является их способность участвовать в обратимых каталитических процессах выделения водорода и кислорода из воды. В настоящее время показана возможность использования в качестве компонентов молекулярных фотокаталитических систем достаточно большого круга химических соединений различной природы.

Так, в качестве фотокатализаторов предложены системы на основе органических красителей, соединений переходных металлов, порфиринов, фталоцианинов и их металлокомплексов.

Основной прогресс, достигнутый в разработке молекулярных фотокаталитических систем разложения воды, связан с созданием так называемых жертвенных систем, моделирующих фотосистемы растительного фотосинтеза и осуществляющих выделение либо водорода, либо кислорода из воды с одновременным необратимым расходованием жертвы - специально добавленного донора или акцептора электрона.

Примером такой жертвенной системы фотокаталитического восстановления воды является система, содержащая трисбипиридильные комплексы рутения и родия Ru bpy 3 2 , Rh bpy 3 3 в качестве фотокатализатора и промежуточного акцептора электрона. Фотовозбуждение такой системы приводит к фотостимулированному переносу электрона и последующему каталитическому выделению водорода из воды на платиновом катализаторе В качестве необратимо расходуемой жертвы, обеспечивающей регенерацию фотокатализатора, используется триэтаноламин.

Осуществить замкнутый, не требующий введения дополнительно расходуемых веществ цикл фоторазложения воды солнечным светом в молекулярных фотокаталитических системах пока еще не удается. Основной задачей является разработка методов предотвращения реакции рекомбинации первичных продуктов фоторазделения зарядов, которая протекает намного быстрее, чем сложные каталитические реакции окисления и восстановления воды. Предполагается, что такая задача может быть решена при переходе к молекулярно-организованным системам, позволяющим по аналогии с природным фотосинтезом получать пространственно разделенные продукты фоторазделения зарядов.

Исследования в этом направлении интенсивно развиваются в последнее время. 3.

– Конец работы –

Эта тема принадлежит разделу:

Современные проблемы квантовой физики

Современная энергетика является топливной и более чем на 90 базируется на использовании химических топлив на основе природных горючих ископаемых… Это определяет, с одной стороны, необходимость энергосбережения и разработку… Речь идет о синтезе с затратой энергии веществ, которые можно было бы использовать в качестве удобного для…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Фотокатализ и фотосенсибилизация

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Солнечно-водородная энергетика
Солнечно-водородная энергетика. Несмотря на все преимущества водорода в качестве синтетического топлива, принципиальным остается вопрос об источнике энергии для получения водорода из воды. В основн

Основные принципы работы солнечных батарей
Основные принципы работы солнечных батарей. Простейшая конструкция солнечного элемента СЭ - прибора для преобразования энергии солнечного излучения - на основе монокристаллического кремния.

Конструкции и материалы солнечных элементов
Конструкции и материалы солнечных элементов. Для эффективной работы солнечных элементов необходимо соблюдение ряда условий оптический коэффициент поглощения а активного слоя полупроводника должен б

Оценка солнечного теплоснабжения в России
Оценка солнечного теплоснабжения в России. Одной из наиболее технически подготовленных к внедрению технологий использования солнечной энергии является технология производства низкопотенциаль

Разработка и внедрение первой в районе Сочи солнечно-топливной котельной
Разработка и внедрение первой в районе Сочи солнечно-топливной котельной. B децентрализованных системах теплоснабжения НВИЭ уже сейчас при наличии благоприятных условий к ним можно отнести и

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги