Поток поля Е

Теперь мы хотим вывести уравнение, которое непосредст­венно и в лоб учитывает тот факт, что закон силы — это закон обратных квадратов. Кое-кому кажется «вполне естественным», что поле меняется обратно пропорционально квадрату расстоя­ния, потому что «именно так, мол, все распространяется». Возьмите световой источник, из которого льется поток света; количество света, проходящее через основание конуса с верши­ной в источнике, одно и то же независимо от того, насколько основание удалено от вершины. Это с необходимостью следует из сохранения световой энергии. Количество света на еди­ницу площади — интенсивность — должно быть обратно про­порционально площади, вырезанной конусом, т. е. квадрату расстояния от источника. Ясно, что по той же причине и элект­рическое поле должно изменяться обратно квадрату расстояния!

Но здесь ведь нет ничего похожего на «ту же причину». Ведь никто не может сказать, что электрическое поле есть мера чего-то такого, что похоже на свет и что поэтому должно сохра­няться. Если бы у нас была такая «модель» электрического поля, в которой вектор поля представлял бы направление и скорость (ну, например, был бы током) каких-то вылетающих маленьких «дробинок», и если бы эта модель требовала, чтобы число дро­бинок сохранялось и ни одна не могла пропасть после вылета из заряда, вот тогда мы могли бы говорить, что «чувствуем» неизбежность закона обратных квадратов. С другой стороны, непременно должен был бы существовать математический способ выражения этой физической идеи. Если бы электрическое поле было подобно сохраняющимся дробинкам, то оно меня­лось бы обратно пропорционально квадрату расстояния и мы могли бы описать такое поведение некоторым уравнением, т. е. чисто математическим путем. Если мы не утверждаем, что элект­рическое поле сделано из дробинок, а понимаем, что это просто модель, помогающая нам прийти к правильной математической теории, то ничего плохого в таком способе рассуждений нет.

Предположим, что мы на мгновение представили себе элект­рическое поле в виде потока чего-то сохраняющегося и текущего повсюду, за исключением того места, где расположен сам заряд (должен же этот поток откуда-то начинаться!).

 

 


 

Фиг. 4.5. Поток E из поверхности S равен нулю.

Представим что-то (что именно — неважно), вытекающее из заряда в окружающее пространство. Если бы Е было вектором такого потока (как h — вектор теплового потока), то вблизи от точечного источника оно обладало бы зависимостью 1/r2. Теперь мы желаем исполь­зовать эту модель для того, чтобы глубже сформулировать закон обратных квадратов, а не просто говорить об «обратных квадратах». (Вам может показаться удивительным, почему вместо того, чтобы сходу, прямо и открыто сформулировать столь прос­той закон, мы хотим трусливо протащить то же самое, но с зад­него хода. Немного терпения! Это окажется небесполезным.) Спросим себя: чему равно «вытекание» Е из произвольной замкнутой поверхности в окрестности точечного заряда? Для начала возьмем простенькую поверхность — такую, как пока­зано на фиг. 4.5. Если поле Е похоже на поток, то суммарное вытекание из этого ящика должно быть равно нулю. Это и полу­чается, если под «вытеканием» из этой поверхности мы понимаем поверхностный интеграл от нормальной составляющей Е, т. е. поток Е в том смысле, который был установлен в гл. 3. На бо­ковых гранях нормальная составляющая Е равна нулю. На сферических гранях нормальная составляющая Е равна самой величине Е, с минусом на меньшей грани и с плюсом на большей. Величина Е убывает как 1/r2, а площадь грани растет как r2, так что их произведение от r не зависит. Приток Е через грань а в точности гасится оттоком через грань b. Суммарный поток через S равен нулю, а это все равно, что сказать, что


(4.30)

на этой поверхности.


Теперь покажем, что две «торцевые» поверхности могут быть без ущерба для величины интеграла (4.30) перекошены отно­сительно радиуса. Хотя это верно всегда, но для наших целей

 

Фиг. 4.6. Поток Е из поверхности S равен нулю.

достаточно только показать, что это справедливо тогда, когда «торцы» малы и стягивают малый угол с вершиной в источнике, т. е. в действительности бесконечно малый угол. На фиг. 4.6 показана поверхность S, «боковые грани» которой радиальны, а «торцы» перекошены. На рисунке они не малы, но надо пред­ставить себе, что на самом деле они очень малы. Тогда поле Е над поверхностью будет достаточно однородным, так что можно взять его значение в центре. Если торец наклонен на угол q, то его площадь возрастает в 1/cosq раз, а Еnкомпонента Е, нормальная к поверхности торца, убывает в cosq раз, так что произведение Еnне меняется. Поток из всей поверхности S по-прежнему равен нулю.

Теперь уже легко разглядеть, что и поток из объема, окру­женного произвольной поверхностью S, обязан быть равным ну­лю. Ведь любой объем можно представить себе составленным из таких частей, как на фиг. 4.6. Вся поверхность раз­делится на пары торцевых участков, а поскольку потоки через каждую из них внутрь и наружу объема попарно уничтожаются, то и суммарный поток через поверхность обратится в нуль. Идея эта иллюстрируется фиг. 4.7. Мы получаем совершенно общий результат: суммарный поток Е через любую поверхность S в поле точечного заряда равен нулю.

 

 


 

Фиг. 4.7. Всякий объем можно представлять себе состоящим из бесконечно ма­лых усеченных конусов.


Поток E сквозь один конец каж­дого конического сегмента равен и противоположен потоку сквозь другой конец. Общий поток из поверхности S поэтому равен пулю.

 

Фиг. 4.8. Если заряд нахо­дится внутри поверхности, поток наружу не равен нулю.

Будьте, однако, внимательны! Наше доказательство рабо­тает только тогда, когда поверхность S не окружает заряд. А что случилось бы, если бы точечный заряд оказался внутри поверхности? Как и раньше, поверхность можно было бы разде­лить на пары площадок, связанные радиальными прямыми, про­ходящими через заряд (фиг. 4.8). Потоки через эти участки по той же причине, что и раньте, по-прежнему попарно равны, но только теперь их знаки одинаковы. Поток из поверхности, окружающей заряд, не равен нулю. Тогда чему же он равен? Это можно определить с помощью фокуса. Допустим, что мы «убрали» заряд «изнутри», окружив его маленькой поверхно­стью S' так, чтобы она лежала целиком внутри первоначальной поверхности 5 (фиг. 4.9). Теперь в объеме, заключенном между двумя поверхностями S и S', никакого заряда нет. Общий по­ток из этого объема (включая поток через S') равен нулю, в чем можно убедиться при помощи прежних аргументов. Они говорят нам, что поток через S' внутрь объема такой же, как поток через S наружу.

Для S' мы можем выбрать любую, какую угодно форму, поэтому давайте сделаем ее сферой с зарядом в центре (фиг. 4.10). Тогда поток через нее подсчитать легко. Если радиус малой сферы равен r, то значение Е повсюду на ее поверхности равно

 



и направлено всегда по нормали к поверхности. Весь поток

 

 


Фиг. 4.9. Поток через S равен потоку через S'.

 

Фиг. 4.10.Поток через сфериче­скую поверхность, охватывающую точечный заряд q, равен qle0.

через S' получится, если эту нормальную составляющую Е умножить на площадь поверхности:

 


Поток через поверхность

 


т. е. равен числу, не зависящему от радиуса сферы! Значит, и поток наружу через S тоже равен q/e0; это значение не зависит от формы S до тех пор, пока заряд q находится внутри. Наши выводы мы можем записать так:

 

 

(4.32)

Давайте вернемся к нашей аналогии с «дробинками» и по­смотрим, есть ли в ней смысл. Наша теорема утверждает, что суммарный поток дробинок через поверхность равен нулю, если поверхность не окружает собой ружье, стреляющее дробью. А если ружье окружено поверхностью, то какого бы размера или формы она ни была, количество проходящих через нее дро­бинок всегда одно и то же — оно дается скоростью, с которой дробинки вылетают из ружья. Все это выглядит вполне разумно для сохраняющихся дробинок. Но сообщает ли эта модель нам хоть что-то сверх того, что получается просто из уравнения (4.32)? Никому не удалось добиться того, чтобы «дробинки» произвели на свет что-нибудь сверх этого закона. Кроме него, они порождают только ошибки. Поэтому-то мы сегодня предпо­читаем чисто абстрактное представление об электромагнитном поле.