Скалярные и векторные поля — Т и h

Мы начинаем сейчас рассмотрение абстрактного, математи­ческого подхода к теории электричества и магнетизма. Наша цель — объяснить смысл законов, написанных в гл. 1. Но для этого надо сперва объяснить новые особенные обозначения, которые мы хотим использовать. Давайте поэтому на время позабудем электромагнетизм и разберемся в математике век­торных полей. Она очень важна не только в электромагнетизме, но и во многих физических обстоятельствах, подобно тому как обычное дифференциальное и интегральное исчисление важно во всех областях физики. Мы переходим к дифференциальному исчислению векторов.

Ниже перечислены некоторые сведения из алгебры векторов. Считается, что вы с ними уже знакомы

 


 


Мы будем также пользоваться следующими двумя равенствами:

 


Фиг. 2.1. Температура Т — пример скалярного поля. С каждой точкой (х, у, z) в прост­ранстве связывается число Т(х, у, z). Все точки на поверхности с помет­кой Т=20° (изображенной в виде кривой при z=0) имеют одну и ту же температуру. Стрелки — это примеры вектора потока тепла h.

 

Уравнение (2.7) справедливо, конечно, только при Dx; Dy и Dz®0.

Простейшее из физических полей — скалярное. Полем, как вы помните, называется величина, зависящая от положения в пространстве. Скалярное поле — это просто такое поле, кото­рое в каждой точке характеризуется одним-единственным чис­лом — скаляром. Это число, конечно, может меняться во вре­мени, но пока мы на это не будем обращать внимания. (Речь будет идти о том, как поле выглядит в данное мгновение.) В ка­честве примера скалярного поля рассмотрим брусок из какого-то материала. В одних местах брусок нагрет, в других — осту­жен, так что его температура меняется ют точки к точке каким-то сложным образом. Температура тогда будет функцией х, у и z — положения в пространстве, измеренного в прямоугольной си­стеме координат. Температура — это скалярное поле.

Один способ представить себе скалярное поле — это вообра­зить «контуры»,

т. е. мысленные поверхности, проведенные через точки с одинаковыми значениями поля, подобно гори­зонталям на картах, соединяющим точки на одной высоте над уровнем моря. Для температурного поля контуры носят назва­ние «изотермические поверхности», или изотермы. На фиг. 2.1 показано температурное поле и зависимость Т от х и у при z=0. Проведено несколько изотерм.


Поля бывают также векторными. Идея их очень проста. В каждой точке пространства задается вектор. Он меняется от точки к точке. Рассмотрим в виде примера вращающееся тело. Скорость материала тела во всякой точке — это вектор, кото­рый является функцией ее положения (фиг. 2.2). Другой при­мер — поток тепла в бруске из некоторого материала. Если в одной части бруска температура выше, а в другой — ниже, то от горячей части к холодной будет идти поток тепла. Тепло в разных частях бруска будет растекаться в различных направ­лениях. Поток тепла — это величина, имеющая направление;

 

Фиг. 2.2. Скорости атомов во вращающемся теле — пример век­торного поля.

обозначим ее h; длина этого вектора пусть измеряет количество протекающего тепла. Векторы потока тепла также изображены на фиг. 2.1.


Определим теперь h более точно. Длина вектора потока тепла в данной точке — это количество тепловой энергии, про­ходящее за единицу времени и в пересчете на единицу площади сквозь бесконечно малый элемент поверхности, перпендикуляр­ный к направлению потока. Вектор указывает направление потока (фиг. 2.3). В буквенных обозначениях: если DJ — теп­ловая энергия, протекающая за единицу времени сквозь эле­мент поверхности Dа, то

 

 

(2.9)


где еfединичный вектор направления потока Вектор h можно определить и иначе — через его компонен­ты. Зададим себе вопрос, сколько тепла протекает через малую поверхность под произвольным углом к направлению потока. На фиг. 2.4 мы изобразили малую поверхность Аa2 под некото­рым углом к поверхности Dat, которая перпендикулярна к по­току. Единичный вектор n перпендикулярен к поверхности

 

 

Фиг.2.3.Тепловой потоквекторное поле. Вектор h указывает направление потока. Абсолютная величина его выражает энергию, переносимую за единицу времени через элемент по­верхности, ориентированный попе­рек потока, деленную на площадь элемента поверхности.

 


 

Фиг. 2.4. Тепловые потоки сквозь 2 и сквозь Aa1 одинаковы.


2. Угол q между n и h равен углу между поверхностями (так как h — нормаль к Da1). Чему теперь равен поток тепла че­рез Dа2 на единицу площади? Потоки сквозь Dа2 и Dа1 равны между собой, отличаются только площади. Действительно, Dа1 = Dа2cosq. Поток тепла через Dа2 равен

 

 

(2.10)

Поясним это уравнение: поток тепла (в единицу времени и на единицу площади) через произвольный элемент поверхности с единичной нормалью n равен h•n. Можно еще сказать так: компонента потока тепла, перпендикулярная к элементу по­верхности Dа2, равна h•n. Можно, если мы хотим, считать эти утверждения определением h. Сходные идеи мы применим и к другим векторным полям.