Одинаковые уравнения — одинаковые решения

Вся информация о физическом мире, при­обретенная со времени зарождения научного прогресса, поистине огромна, и кажется почти невероятным, чтобы кто-то овладел заметной частью ее. Но фактически физик вполне может постичь общие свойства физического мира, не становясь специалистом в какой-то узкой об­ласти. Тому есть три причины. Первая. Суще­ствуют великие принципы, применимые к лю­бым явлениям, такие, как закон сохранения энергии и момента количества движения. Глу­бокое понимание этих принципов позволяет сразу постичь очень многие вещи. Вторая. Оказывается, что многие сложные явления, как, например, сжатие твердых тел, в основном обусловливаются электрическими и квантовомеханическими силами, так что, поняв основ­ные законы электричества и квантовой меха­ники, имеется возможность понять многие явления, возникающие в сложных условиях. Третья. Имеется замечательнейшее совпадение: Уравнения для самых разных физических усло­вий часто имеют в точности одинаковый вид. Использованные символы, конечно, могут быть разными — вместо одной буквы стоит другая, но математическая форма уравнений одна и та же. Это значит, что, изучив одну область, мы сразу получаем множество прямых и точных сведений о решениях уравнений для другой области.


Мы закончили электростатику и скоро пе­рейдем к изучению магнетизма и электродина­мики. Но прежде хотелось бы показать, что, изучив электростатику, мы одновременно узна­ли о многих других явлениях. Мы увидим, что уравнения электростатики фигурируют и в ряде других областей физики. Путем прямого переноса решений (одинаковые матема­тические уравнения должны, конечно, иметь одинаковые ре­шения) можно решать задачи из других областей с той же легкостью (или с таким же трудом), как и в электростатике. Уравнения электростатики, как мы знаем, такие:

 

 

(12.1)


(12.2}

(Мы пишем уравнения электростатики в присутствии диэлект­риков, чтобы учесть общий случай.) То же физическое содер­жание может быть выражено в другой математической форме:

 

 


 


(12.3)

 

(12.4)

И вот суть дела заключается в том, что существует множество физических проблем, для которых математические уравнения имеют точно такой же вид. Сюда входит потенциал (j), градиент которого, умноженный на скалярную функцию (x), имеет ди­вергенцию, равную другой скалярной функции (-r/e0).

Все, что нам известно из электростатики, можно немедленно перенести на другой объект, и наоборот. (Принцип, конечно, работает в обе стороны: если известны какие-то характеристики другого объекта, то можно использовать эти сведения в соот­ветствующей задаче по электростатике.) Мы рассмотрим ряд примеров из разных областей, когда имеются уравнения такого вида.