Диффузия нейтронов; сферически-симметричный источник в однородной среде

Приведем еще один пример, дающий уравнение того же вида, но на сей раз относящееся к диффузии. В гл. 43 (вып. 4) мы рассмотрели диффузию ионов в однородном газе и диффузию одного газа сквозь другой. Теперь возьмем другой пример — диффузию нейтронов в материале типа графита. Мы выбрали графит (разновидность чистого углерода), потому что углерод не поглощает медленных нейтронов. Нейтроны путешествуют в нем свободно. Они проходят по прямой в среднем несколько сантиметров, прежде чем рассеются ядром и отклонятся в сто­рону. Так что если у нас есть большой кусок графита толщи­ной в несколько метров, то нейтроны, находившиеся сначала в одном месте, будут переходить в другие места.

 

 


 

 

Фиг. 12.7. Нейтроны рождаются однородно внутри сферы радиуса а в большом графитовом блоке и диффундируют наружу. Плотность нейтронов N получена как функция r, расстояния от центра источника.

Справа показана электростатическая аналогия: однородно заряженная сфе­ра, причем N соответствует j, а J соответствует Е.

Мы опишем их усредненное поведение, т. е. их средний поток.

 


Пусть N(x, у, z)DV — число нейтронов в элементе объема DV в точке (х, у, г). Движение нейтронов приводит к тому, что одни покидают DV, а другие попадают в него. Если в одной области оказывается нейтронов больше, чем в соседней, то от­туда их будет переходить во вторую область больше, чем наобо­рот; в результате возникнет поток. Повторяя доказательства, приведенные в гл. 43 (вып. 4), можно описать поток вектором потока J. Его компонента Jx есть результирующее число ней­тронов, проходящих в единицу времени через единичную пло­щадку, перпендикулярную оси х. Мы получим тогда

 

(12.19)

где коэффициент диффузии D дается в терминах средней ско­рости v и средней длины свободного пробега l между столкно­вениями:


Векторное уравнение для J имеет вид


 

 

(12.20)


Скорость, с которой нейтроны проходят через некоторый элемент поверхности da, равна J•nda (где n, как обычно,— единичный вектор нормали). Результирующий поток из эле­мента объема тогда равен (пользуясь обычным гауссовым доказательством) Ñ•JdV. Этот поток приводил бы к уменьше­нию числа нейтронов в DV, если нейтроны не генерируются внутри DV (с помощью какой-нибудь ядерной реакции). Если в объеме присутствуют источники, производящие S нейтронов в единицу времени в единице объема, то результирующий поток из DV будет равен [S-(dNIdt)]DV. Тогда получаем

 

(12.21)

Комбинируя (12.21) и (12.20), получаем уравнение диффузии нейтронов


 

 

(12.22)

В статическом случае, когда dN/dt=0, мы снова имеем урав­нение (12.4)! Мы можем воспользоваться нашими знаниями в электростатике для решения задач по диффузии нейтронов. Давайте же решим какую-нибудь задачу. (Пожалуй, вы недо­умеваете: зачем решать новую задачу, если мы уже решили все задачи в электростатике? На этот раз мы можем решить быстрее именно потому, что электростатические задачи дей­ствительно уже решены!)

Пусть имеется блок материала, в котором нейтроны (ска­жем, за счет деления урана) рождаются равномерно в сфери­ческой области радиусом а (фиг. 12.7). Мы хотели бы узнать, чему равна плотность нейтронов повсюду? Насколько однород­на плотность нейтронов в области, где они рождаются? Чему равно отношение нейтронной плотности в центре к нейтронной плотности на поверхности области рождения? Ответы найти легко. Плотность нейтронов в источнике S0 стоит вместо плот­ности зарядов r, поэтому наша задача такая же, как задача об однородно заряженной сфере. Найти N—все равно, что найти потенциал j. Мы уже нашли поля внутри и вне однородно заряженной сферы; для получения потенциала мы можем их проинтегрировать. Вне сферы потенциал равен Q/4pe0r, где полный заряд Q дается отношением 4pа3r/3. Следовательно,

 

 


 

 

(12.23)

Для внутренних точек вклад в поле дают только заряды Q(r), находящиеся внутри сферы радиусом r; Q(r) =4pг3r/3, следовательно,


 

(12.24)

Поле растет линейно с r. Интегрируя Е, получаем j:


 

 


На расстоянии радиуса а jвнешн должен совпадать с jвнутр) поэтому постоянная должна быть равна rа2/2e0. (Мы предпола­гаем, что потенциал j равен нулю на больших расстояниях от источника, а это для нейтронов будет отвечать обращению .N в нуль.) Следовательно,

 

 

(12.25)


Теперь мы сразу же найдем плотность нейтронов в на­шей диффузионной задаче

 

 

(12.26)


и

 

 

(12.27)

На фиг. 12.7 представлена зависимость N от r.

Чему же теперь равно отношение плотности в центре к плотности на краю? В центре (r=0) оно пропорционально За2/2, а на краю (r=а) пропорционально 2а2/2; поэтому отно­шение плотностей равно 3/2. Однородный источник не дает однородной плотности нейтронов. Как видите, наши познания в электростатике дают хорошую затравку для изучения физики ядерных реакторов.

Диффузия играет большую роль во многих физических об­стоятельствах. Движение ионов через жидкость или электро­нов через полупроводник подчиняется все тому же уравнению. Мы снова и снова приходим к одним и тем же уравнениям.