Контрольная работа № 1

101. Два автомобиля, выехав одновременно из одного пункта, движутся прямолинейно в одном направлении. Зависимость пройденного ими пути задается уравнениями s1 = At + Bt2 ( А= 5 м/с ,В= 0,2 м/с2 ) и s2 = Ct + Dt2 + Ft3 ( С=1 м/с ,D =0,5 м/с2 , F = 0,1 м/с3 ). Определить относительную скорость u автомобилей в момент времени t = 3 с.

102. В течение времени t скорость тела задается уравнением вида V = A + Bt + Ct2 (0 £ t £ t). Определить среднюю скорость за промежуток времени t = 2 с ,если А = 5 м/с ,В = 2 м/с2 и С = - 1 м/с3.

103. Зависимость пройденного телом пути от времени задается

уравнением s = A - Bt + Ct2 + Dt3 (A = 6 м, В = 3 м/с, С = 2 м/с2, D = 1 м/с3 ). Определить для тела в интервале времени от t1 = 1 c до t2 = 4 c: 1) среднюю скорость; 2) среднее ускорение.

104. Материальная точка движется прямолинейно с начальной скоростью V0 = 10 м/с и с постоянным ускорением а = -5 м/с2. Определить, во сколько раз путь DS, пройденный материальной точкой, будет превышать модуль ее перемещения Dr спустя t = 3 с после начала отсчета времени.

105. Зависимость пройденного телом пути от времени задается уравнением s = A + Bt + Ct2 + Dt3 (С = 0,1 м/с2, D = 0,03 м/с3 ). Определить: 1) через сколько времени после начала движения ускорение а тела будет равно 2 м/с2; 2) среднее ускорение <a> тела за этот промежуток времени.

106. Тело брошено под углом a = 30° к горизонту со скоростью = 30 м/с. Каковы будут нормальное аn и тангенциальное аt ускорения тела через время t = 1 с после начала движения?

107. Материальная точка движется по окружности с постоянной угловой скоростью w = p/6 рад/с. Во сколько раз путь DS, пройденный за время t = 4 с, будет больше модуля ее перемещения Dr ? Принять, что в момент начала отсчета времени радиус-вектор r, задающий положение точки на окружности, относительно исходного положения был повернут на угол j0 = p/3 рад.

108. Материальная точка движется в плоскости ху, согласно уравнениям х = А11t+С1t2 и у = А22t+С2t2, где В1 = 7 м/с, С1 = -2 м/с, В2 = -1 м/с, С2 = 0,2 м/с2. Найти модули скорости и ускорения точки в момент времени t = 5 с.

109. По краю равномерно вращающейся с угловой скоростью w = 1 рад/с платформы идет человек и обходит платформу за время t = 9,9 с. Каково наибольшее ускорение а движения человека относительно Земли? Принять радиус платформы R = 2 м.

110. Точка движется по окружности радиусом R = 30 см с постоянным угловым ускорением e . Определить тангенциальное ускорение аt точки, если известно, что за время t = 4 с она совершила три оборота и в конце третьего оборота ее нормальное ускорение аn = 2,7 м/с2.

 


 

111. При горизонтальном полете со скоростью V = 250 м/с снаряд массой m = 8 кг разорвался на две части. Большая часть массой m1 = 6 кг получила скорость U1 = 400 м/с в направлении полета снаряда. Определить модуль и направление скорости U2 меньшей части снаряда.

112. С тележки, свободно движущейся по горизонтальному пути со скоростью V1 = 3 м/с в сторону, противоположную движению тележки, прыгает человек, после чего скорость тележки изменилась и стала равной U1 = 4 м/с. Определить горизонтальную составляющую скорости U человека при прыжке относительно тележки. Масса тележки m1 = 210 кг, масса человека m2 = 70 кг.

113. Орудие, жестко закрепленное на железнодорожной платформе, производит выстрел вдоль полотна железной дороги под углом a = 30° к линии горизонта. Определить скорость U2 отката платформы, если снаряд вылетает со скоростью U1 = 480 м/с. Масса платформы с орудием и снарядами m2 = 18 т, масса снаряда m1 = 60 кг.

114. Человек массой m1 = 70 кг, бегущий со скоростью V1 = 9 км/ч, догоняет тележку массой m2 = 190 кг, движущуюся со скоростьюV2 =3,6 км/ч, и вскакивает на нее. С какой скоростью станет двигаться тележка с человеком? С какой скоростью будет двигаться тележка с человеком, если человек до прыжка бежал навстречу тележке?

115. Конькобежец, стоя на коньках на льду, бросает камень массой m1 = 2,5 кг под углом a = 30° к горизонту со скоростью V = 10 м/с. Какова будет начальная скорость V0 движения конькобежца, если масса его m2 = 60 кг? Перемещением конькобежца во время броска пренебречь.

116. На полу стоит тележка в виде длинной доски, снабженной легкими колесами. На одном конце стоит человек. Масса его m1 = 60 кг, масса доски m2 = 20 кг. С какой скоростью (относительно пола) будет двигаться тележка, если человек пойдет вдоль нее со скоростью (относительно доски) V = 1 м/с? Массой колес и трением пренебречь.

117. Снаряд, летевший со скоростью V = 400 м/с, в верхней точке траектории разорвался на два осколка. Меньший осколок, масса которого составляет 40% от массы снаряда, полетел в противоположном направлении со скоростью U1 = 150 м/c. Определить скорость U2 большего осколка.

118. Две одинаковые лодки массами m = 200 кг каждая (вместе с человеком и грузами, находящимися в лодках) движутся параллельными курсами навстречу друг другу с одинаковыми скоростями V = 1 м/c. Когда лодки поравнялись, то с первой лодки на вторую и со второй на первую одновременно перебрасывают грузы массами m1 = 20 кг. Определить скорости U1 и U2 лодок после перебрасывания грузов.

119. На сколько переместится относительно берега лодка длиной L = 3,5 м и массой m1 = 200 кг, если стоящий на корме человек массой m2 = 80 кг переместится на нос лодки? Считать лодку расположенной перпендикулярно берегу.


 

120. Лодка длиной L = 3 м и массой m = 120 кг стоит на спокойной воде. На носу и корме находятся два рыбака массами m1 = 60 кг и m2 = 90 кг. На сколько сдвинется лодка относительно воды, если рыбаки поменяются местами?

121. В деревянный шар массой m1 = 8 кг, подвешенный на нити длинной L = 1,8 м, падает горизонтально летящая пуля массой m2 = 4 г. С какой скоростью летела пуля, если нить с шаром и застрявшей в нем пулей отклонилась от вертикали на угол a = 3°? Размером шара пренебречь. Удар пули считать прямым, центральным.

122. По небольшому куску мягкого железа, лежащему на наковальне массой m1 = 300 кг, ударяет молот массой m2 = 8 кг. Определить КПД h удара, если удар неупругий. Полезной считать энергию, затраченную на деформацию куска железа.

123. Шар массой m1 = 1 кг движется со скоростью V1 = 4 м/c и сталкивается с покоящимся шаром массой m2 = 3кг. Каковы скорости U1 и U2 шаров после удара? Удар считать абсолютно упругим, прямым, центральным.

124. Шар массой m1 = 3 кг движется со скоростью V1 = 2 м/с и сталкивается с покоящимся шаром массой m2 = 5 кг. Какая работа будет совершена при деформации шаров? Удар считать абсолютно неупругим, прямым, центральным.

125. Определить КПД h неупругого удара бойка массой m1 = 0,5 т, падающего на сваю массой m2 = 120 кг. Полезной считать энергию, затраченную на вбивание сваи.

126. Шар массой m1 = 4 кг движется со скоростью V1 = 5 м/с и сталкивается с шаром массой m2 = 6 кг, который движется ему навстречу со скоростью V2 = 2 м/с. Определить скорости U1 и U2 шаров после удара. Удар считать абсолютно упругим, прямым, центральным.

127. Из ствола автоматического пистолета вылетела пуля массой m1 = 10 г со скоростью V = 300 м/с. Затвор пистолета массой m2 = 200 г прижимается к стволу пружиной, жесткость которой К = 25 кН/м. На какое расстояние отойдет затвор после выстрела? Считать, что пистолет жестко закреплен.

128. Шар массой m1 = 5 кг движется со скоростью V1 = 1 м/с и сталкивается с покоящимся шаром массой m2 = 2 кг. Определить скорости U1 и U2 шаров после удара. Удар считать абсолютно упругим, прямым, центральным.

129. Из орудия, не имеющего противооткатного устройства, производилась стрельба в горизонтальном направлении. Когда орудие было неподвижно закреплено, снаряд вылетел со скоростью V1 = 600 м/с, а когда орудию дали возможность свободно откатываться назад, снаряд вылетел со скоростью V2 = 580 м/с. С какой скоростью откатилось при этом орудие?

 


 

130. Шар массой m1 = 2 кг сталкивается с покоящимся шаром большей массы и при этом теряет 40% кинетической энергии. Определить массу m2 большего шара. Удар считать абсолютно упругим, прямым, центральным.

131. Определить работу растяжения двух соединенных последовательно пружин жестокостями К1 = 400 Н/м и К2 = 250 Н/м, если первая пружина при этом растянулась на DL = 2 см.

132. Из шахты глубиной h = 600 м поднимают клеть массой m1 = 3,0 т на канате, каждый метр которого имеет массу m = 1,5 кг. Какая работа А совершится при поднятии клети на поверхность Земли? Каков коэффициент полезного h действия подъемного устройства?

133. Пружина жесткостью К = 500 Н/м сжата силой F = 100 Н. Определить работу А внешней силы, дополнительно сжимающей пружину еще на DL = 2 см.

134. Две пружины жесткостью К1 = 0,5 кН/м и К2 = 1 кН/м скреплены параллельно. Определить потенциальную энергию П данной системы при абсолютной деформации DL = 4 см.

135. Какую нужно совершить работу А, чтобы пружину жесткостью К = 800 Н/м, сжатую на х = 6 см, дополнительно сжать на = 8 см?

136. Если на верхний конец вертикально расположенной спиральной пружины положить груз, то пружина сожмется на DL = 3 мм. На сколько сожмет пружину тот же груз, упавший на конец пружины с высоты h = 8 см?

137. Из пружинного пистолета с пружиной жесткостью К = 150 Н/м был произведен выстрел пулей массой m = 8 г. Определить скорость V пули при вылете ее из пистолета, если пружина была сжата на = 4 см.

138. Налетев на пружинный буфер, вагон массой m = 16 т, двигавшийся со скоростью V = 0,6 м/с, остановился, сжав пружину на DL = 8 см. Найти общую жесткость К пружины буфера.

139. Цепь длиной L = 2 м лежит на столе, одним концом свисая со стола. Если длина свешивающейся части превышает 1/3L, то цепь соскальзывает со стола. Определить скорость V цепи в момент ее отрыва от стола.

140. Какая работа А должна быть совершена при поднятии с земли материалов для постройки цилиндрической дымоходной трубы высотой h = 40 м, наружным диаметром D = 3,0 м и внутренним диаметром d = 2,0 м? Плотность материала r принять равной 2,8 ×103 кг/м3.

141. Шарик массой m = 60 г, привязанный к концу нити длиной L1 = 1,2 м, вращается с частотой n1 = 2 с-1, опираясь на горизонтальную плоскость. Нить укорачивается, приближая шарик к оси до расстояния L2 = 0,6 м. С какой частотой n2 будет при этом вращаться шарик? Какую работу А совершает внешняя сила, укорачивая нить? Трением шарика о плоскость пренебречь.

 


 

142. По касательной к шкиву маховика в виде диска диаметром D = 75 см и массой m = 40 кг приложена сила F = 1 кН. Определить угловое ускорение e и частоту вращения n маховика через время t = 10 c после начала действия силы, если радиус r шкива равен 12 см. Силой трения пренебречь.

143. На обод маховика диаметром D = 60 см намотан шнур, к концу которого привязан груз массой m = 2 кг. Определить момент инерции J маховика, если он, вращаясь равноускоренно под действием силы тяжести груза, за время t = 3 с приобрел угловую скорость w = 9 рад/с.

144. Нить с привязанными к ее концам грузами массами m1 = 50 г и m2 = 60 г перекинута через блок диаметром D = 4 см. Определить момент инерции J блока, если под действием силы тяжести грузов он получил угловое ускорение e = 1,5 рад/с2. Трением и проскальзыванием нити по блоку пренебречь.

145. Стержень вращается вокруг оси, проходящей через его середину, согласно уравнению j = Аt+Bt3, где А = 2 рад/с, В = 0,2 рад/с3. Определить вращающий момент М, действующий на стержень через время t = 2 с после начала вращения, если момент инерции стержня J = 0,048 кг×м2.

146. По горизонтальной плоскости катится диск со скоростью V = 8 м/с. Определить коэффициент сопротивления, если диск, будучи представленным самому себе, остановился, пройдя путь S = 18 м.

147. Определить момент силы М, который необходимо приложить к блоку, вращающемуся с частотой n = 12 с-1, чтобы он остановился в течение времени Dt = 8 с. Диаметр блока D = 30 см. Массу блока m = 6 кг считать равномерно распределенной по ободу.

148. Блок, имеющий форму диска массой m = 0,4 кг, вращается под действием силы натяжения нити, к концам которой подвешены грузы массами m1 = 0,3 кг и m2 = 0,7 кг. Определить силы натяжения Т1 и Т2 нити по обе стороны блока.

149. К краю стола прикреплен блок. Через блок перекинута невесомая и нерастяжимая нить, к концам которой прикреплены грузы. Один груз движется по поверхности стола, а другой - вдоль вертикали вниз. Определить коэффициент f трения между поверхностями груза и стола, если массы каждого груза и масса блока одинаковы и грузы движутся с ускорением а = 3,6 м/с2. Проскальзыванием нити по блоку и силой трения, действующей на блок, пренебречь.

150. К концам легкой и нерастяжимой нити, перекинутой через блок, подвешены грузы массами m1 = 0,2 кг и m2 = 0,3 кг. Во сколько раз отличаются силы, действующие на нить по обе стороны от блока, если масса блока m = 0,4 кг. Силами трения и проскальзывания нити по блоку пренебречь.

151. На скамье Жуковского сидит человек и держит на вытянутых руках гири массой m = 5 кг каждая. Расстояние от каждой гири до оси скамьи L = 70 см. Скамья вращается с частотой n1 = 1 с-1. Как изменится частота вращения скамьи и какую работу А произведет человек, если он сожмет руки так, что расстояние от каждой гири до оси уменьшится до L2 = 20 см? Момент инерции человека и скамьи (вместе) относительно оси J = 2,5 кг×м2.

152. На скамье Жуковского стоит человек и держит в руках стержень вертикально по оси скамьи. Скамья с человеком вращается с угловой скоростью w1 = 4 рад/с. С какой угловой скоростью w2 будет вращаться скамья с человеком, если повернуть стержень так, чтобы он занял горизонтальное положение? Суммарный момент инерции человека и скамьи J = 5 кг×м2. Длина стержня L = 1,8 м, масса m = 6 кг. Считать, что центр масс стержня с человеком находится на оси платформы.

153. Платформа в виде диска диаметром D = 3 м и массой m1 = 180 кг может вращаться вокруг вертикальной оси. С какой угловой скоростью w1 будет вращаться эта платформа, если по ее краю пойдет человек массой m2 = 70 кг со скоростью V = 1,8 м/с относительно платформы.

154. Платформа, имеющая форму диска, может вращаться около вертикальной оси. На краю платформы стоит человек. На какой угол j повернется платформа, если человек пойдет вдоль края платформы и, обойдя ее, вернется в исходную (на платформе) точку? Масса платформы m1 = 280 кг, масса человека m2 = 80 кг.

155. На скамье Жуковского стоит человек и держит в руке за ось велосипедное колеса, вращающееся вокруг своей оси с угловой скоростью w1 = 25 рад/с. Ось колеса расположена вертикально и совпадает с осью скамьи Жуковского. С какой скоростью w2 станет вращаться скамья, если повернуть колесо вокруг горизонтальной оси на угол a = 90°? Момент инерции человека и скамьи равен 2,5 кг×м2, момент инерции колеса J = 0,5 кг×м2.

156. Однородный стержень длиной L = 1,0 м может свободно вращаться вокруг горизонтальной оси, проходящей через один из его концов. В другой конец абсолютно неупруго ударяет пуля массой m = 7 г, летящая перпендикулярно стержню и его оси. Определить массу M стержня, если в результате попадания пули он отклонился на угол a = 60°. Принять скорость пули V = 360 м/с.

157. На краю платформы в виде диска, вращающейся по инерции вокруг вертикальной оси с частотой n1 = 8 мин-1, стоит человек массой m1 = 70 кг. Когда человек перешел в центр платформы, она стала вращаться с частотой n2 = 10 мин-1. Определить массу платформы. Момент инерции человека рассчитывать как для материальной точки.

158. На краю неподвижной скамьи Жуковского диаметром D = 0,8 м и массой m1 = 6 кг стоит человек массой m2 = 60 кг. С какой угловой скоростью w начнет вращаться скамья, если человек поймает летящий на него мяч массой m = 0,5 кг? Траектория мяча горизонтальна и проходит на расстоянии r = 0,4 м от оси скамьи. Скорость мяча V = 5 м/с.


 

159. Горизонтальная платформа массой m1 = 150 кг вращается вокруг вертикальной оси, проходящей через центр платформы, с частотой n = 8 мин-1. Человек массой m2 = 70 кг стоит при этом на краю платформы. С какой угловой скоростью w начнет вращаться платформа, если человек перейдет от края платформы к ее центру? Считать платформу круглым, однородным диском, а человека - материальной точкой.

160. Однородный стержень длиной L = 1,0 м и массой M = 0,7 кг подвешен на горизонтальной оси, проходящей через верхний конец стержня. В точку, отстоящую от оси на 2/3L, абсолютно неупруго ударяет пуля массой m = 5 г, летящая перпендикулярно стержню и его оси. После удара стержень отклонился на угол a = 60°.Определить скорость пули.

161. Вода течет в горизонтально расположенной трубе переменного сечения. Скорость V1 воды в широкой части трубы равна 20 см/с. Определить скорость V2 в узкой части трубы, диаметр d2 которой в 1,5 раза меньше диаметра d1 широкой части.

162. В горизонтально расположенной трубе с площадью поперечного сечения S1 = 20 см2 течет жидкость. В одном месте труба имеет сужение, в котором площадь сечения S2 =12 см2. Разность Dh уровней в двух манометрических трубках, установленных в широкой и узкой частях трубы, равна 8 см. Определить объемный расход Qv жидкости.

163. Давление р ветра на стену равно 200 Па. Определить скорость V ветра, если он дует перпендикулярно стене. Плотность r воздуха равна 1,29 кг/м3.

164. Струя воды диаметром d = 2 см, движущаяся со скоростью V = 10 м/с, ударяется о неподвижную плоскую поверхность, поставленную перпендикулярно струе. Найти силу F давления струи на поверхность, считая, что после удара о поверхность скорость частиц воды равна нулю.

165. Латунный шарик диаметром d = 0,5 мм падает в глицерине. Определить : 1) скорость V установившегося движения шарика; 2) является ли при этой скорости обтекание шарика ламинарным?

166. В поток воды опущена изогнутая трубка с углом 90°, обращенная открытым концом навстречу течению. Вода в трубке поднимается на высоту h = 150 мм над уровнем воды. Определить скорость течения воды.

167. В высокий широкий сосуд налит глицерин (плотность r0 = 1,21×103 кг/м3, вязкость h = 0,350 Па×с). В глицерин погружают вдалеке от стенок сосуда и опускают без толчка шарик радиусом r = 1 мм. Плотность шарика r = 104 кг/м3. Первоначальная высота шарика над дном сосуда h = 0,5 м. Найти время, за которое шарик достигнет дна сосуда.

168. Шприц заполнен керосином. Радиус поршня шприца R = 2 см, ход поршня L = 25 см. Радиус выходного отверстия шприца r = 2 мм. Пренебрегая вязкостью керосина и трением поршня о стенки, определить время t, за которое будет вытеснен керосин из шприца, если давить на поршень с постоянной силой F = 5 Н.


 

169. Устройство Пито-Прандталя погружено в жидкость с плотностью r = 1,1×103 кг/м3 навстречу потоку. Верхние концы трубок подключены к дифференциальному манометру, разность давлений которого составила = 4,95×103 Па. Найти скорость течения жидкости.

170. Цилиндрический сосуд высоты h = 0,5 м и радиусом R = 10 см наполнен доверху водой. В дне сосуда открывается отверстие радиуса r = 1 мм. Пренебрегая вязкостью воды, определить время, за которое вся вода вытечет из сосуда.

171. Частица движется со скоростью V = с/3, где с - скорость света в вакууме. Какую долю энергии покоя составляет кинетическая энергия частицы?

172. Протон с кинетической энергией Т = 3 ГэВ при торможении потерял треть этой энергии. Определить, во сколько раз изменился релятивистский импульс частицы.

173. При какой скорости b (в долях скорости света) релятивистская масса любой частицы вещества в n = 3 раза больше массы покоя?

174. Электрон движется со скоростью V = 0,6×с (с - скорость света в вакууме). Определить релятивистский импульс р электрона.

175. Скорость электрона V = 0,8×с (с - скорость света в вакууме). Зная энергию покоя электрона в мегаэлектрон-вольтах, определить в тех же единицах кинетическую энергию Т электрона.

176. Протон имеет импульс р = 469 МэВ/с*. Какую кинетическую энергию необходимо дополнительно сообщить протону, чтобы его релятивистский импульс возрос вдвое?

177. Во сколько раз релятивистская масса m электрона, обладающего кинетической энергией Т = 1,53 МэВ, больше массы покоя m0?

178. Какую скорость b (в долях скорости света) нужно сообщить частице, чтобы ее кинетическая энергия была равна удвоенной энергии покоя?

179. Релятивистский электрон имел импульс р1 = m0×c. Определить конечный импульс этого электрона (в единицах m0×c), если его энергия увеличилась в n = 2 раза.

180. Релятивистский протон обладал кинетической энергией, равной энергии покоя. Определить, во сколько раз возрастет его кинетическая энергия, если его импульс увеличится в n = 2 раза.

 

______________________________

 

*1 МэВ/с - единица импульса:

 

кг×м/с.