Биологические полимеры – нуклеиновые кислоты

Нуклеиновые кислоты – природные органические высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах.

Нуклеиновые кислоты - это ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Они были открыты в 1869 году Ф. Мишером в ядрах лейкоцитов и названы нуклеиновыми, т.к. ядро - нуклеус (nucleus).

ДНК

Биополимер, мономером которого является нуклеотид. ДНК – полинуклеотид с очень большой молекулярной массой. В одну молекулу могут входить 108 и более нуклеотидов. В состав нуклеотида входит пятиатомный сахар дезоксирибоза, остаток фосфорной кислоты и одно азотистое основание. Азотистых оснований всего четыре - это аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). Таким образом, нуклеотидов всего четыре: адениновый, гуаниновый, цитозиновый и тиминовый (рис. 13).

 

 

Рис. 13. Схема строения ДНК Рис. 14. Строение участка

молекулы ДНК

Порядок чередования нуклеотидов в ДНК у разных организмов разный.

В 1953 году Д. Уотсон и Ф. Крик построили пространственную модель ДНК. Этому открытию способствовали два экспериментальных дос­тижения:

1) Чаргафф получил чистые образцы ДНК и сделал анализ относительно числа оснований в каждом образце. Оказалось, что из какого бы организма не была выделена ДНК количество аденина равно количеству тимина (А = Т), а количество гуанина равно количеству цитозина (Г = Ц);

2) Уилкинс и Фрэнклин при помощи рентгенограммы получили хороший снимок ДНК (рис. 15).

 

Рис. 15. Рентгенограмма нити ДНК

 

Молекула ДНК состоит из двух соединенных друг с другом цепей и походит на веревочную лестницу (рис. 14). Боковые стороны лестницы закруче­ны наподобие электрических проводов. Боковые стороны - это череду­ющийся сахар и фосфорная кислота. Перекладинами этой лестницы являются азотистые основания, соединенные по принципу комплементарности (А = Т; Г = Ц). Между аденином и тимином двойная водородная связь, гуанином и цитозином тройная.

Ширина двойной спирали - 1,7 нм, в один виток входит по 10 пар оснований, длина витка – 3,4 нм, между нуклеотидами расстояние = 0,34нм. При соединении с определенными белками – гистонами – степень спирализации молекулы повышается. Молекула утолщается и укорачивается. В дальнейшем спирализация достигает максимума, возникает спираль еще более высокого уровня – суперспираль. При этом молекула становится различима в световой микроскоп как вытянутое, хорошо окрашиваемое тельце – хромосома.

Синтез ДHK

ДНК входит в состав хромосом (комплекс ДНК с белком гистоном составляет 90 % хромосомы. Встает вопрос, почему после деления клетки количество хромосом не уменьшается, а остается таким же. Потому что перед делением клетки, происходит удвоение (синтез) ДНК, а, следовательно, и удво­ение хромосом. Под воздействием фермента нуклеазы происходит разрыв водородных связей между азотистыми основаниями на определенном участке ДНК и двойная цепочка ДНК начинает раскручиваться, одна цепь отходит от другой. Из свободных нуклеотидов, которые на­ходятся в ядре клетки под действием фермента ДНК-полимеразы строятся комплементарные нити. Каждая из разделившихся парных ни­тей молекулы ДНК служат матрицей для образования около неё другой комплементарной её нити. Затем каждая прежняя (материнская) и но­вая (дочерняя) нити вновь закручиваются в виде спирали. В резу­льтате образуются две новые совершенно одинаковые двойные спирали (рис. 16).

Способность к воспроизведению является очень важной особенностью молекулы ДНК.

Рис. 16. «Материнская» ДНК служит матрицей для синтеза комплементарных цепей

 

Функция ДНК в клетке

Дезоксирибонуклеиновая кислота выполняет чрезвычайно важные функции, необходимые как для поддержания, так и воспроизведения жизни.

Во – первых, - это хранение наследственной информации, которая заключена в последовательности нуклеотидов одной из ее цепей. Наименьшей единицей генетической информации после нуклеотида являются три последовательно расположенных нуклеотида – триплет. Последовательность триплетов в полинуклеотидной цепи определяет последовательность аминокислот в белковой молекуле. Расположенные друг за другом триплеты, обусловливающие структуру одной полипептидной цепи, представляют собой ген.

Вторая функция ДНК – передача наследственной информации из поколения в поколение. Она осуществляется благодаря редупликации (удвоения) материнской молекулы и последующего распределения дочерних молекул между клетками – потомками. Именно двухцепочечная структура молекул ДНК определяет возможность образования абсолютно идентичных дочерних молекул при редупликации.

Наконец, ДНК участвует в качестве матрицы в процессе передачи генетической информации из ядра в цитоплазму к месту синтеза белка. При этом на одной из ее цепей по принципу комплементарности из нуклеотидов окружающей молекулу среды синтезируется молекула информационной РНК.

РНК

РНК – так же, как ДНК представляет собой биополимер (полинуклеотид), мономерами которого являются нуклеотиды (рис. 17). Азотистые основания трех нуклеотидов те же самые, что входят в состав ДНК (аденин, гуанин, цитозин), четвертое – урацил – присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК содержат другую пентозу – рибозу (вместо дезоксирибозы). По структуре различают двухцепочечные и одноцепочечные РНК. Двухцепочечные РНК являются хранителями генетической информации у ряда вирусов, т.е. выполняют у них функции хромосом.

РНК переносят информацию о последовательности аминокислот в белках, т.е. о структуре белков, от хромосом к месту их синтеза, и участвуют в синтезе белков.

Существует несколько видов одноцепочечных РНК. Их названия обусловлены выполняемой функцией и местонахождением в клетке. Все виды РНК синтезируются на ДНК, которая служит матрицей.

 

Рис. 17. Схема т-РНК

1. Транспортная РНК ( т-РНК) Самая маленькая, в состав входит 76 - 85 нуклеотидов. Имеет вид клеверного листочка, на длинном конце которого находится триплет нуклеотидов (АЦЦ), куда присоединяются активированная аминокислота.На коротком конце находится азотистое основание - гуанин, он не дает разрушаться т-РНК. На противоположном конце находится антикодон, который строго комплементарен генетическому коду на информационной РНК. Основная функция т-РНК – это перенос аминокислот к месту синтезабелка. Из общего содержания РНК в клетке на долю т-РНК приходится 10 %.

2. Рибосомальная РНК (р-РНК) содержаться в рибосомах, состоят от 3 - 5 тыс. нуклеотидов. Из общего содержания РНК в клетке на долю р-РНК приходится 90 %.

3. Информационная (и-РНК) или матричная (м-РНК). Содержится в ядре и в цитоплазме, молекулы информационной РНК могут состоять из 300 – 30000 нуклеотидов. Функция её состоит в переносе информации о первичной структуре белка в рибосомы. На долю и-РНК приходится 0,5 - 1 % от общего содержания РНК клетки.

Генетический код

 

Генетический код - это система записи информации о последовательности расположения аминокислот в белках с помощью последовательности расположения нуклеотидов в ДНК.

Свойства генетического кода

1. Код триплетен. Это означает, что каждая из аминокислот зашифрована последовательностью трех нуклеотидов, называемых триплетом или кодоном. Так, аминокислоте цистеину соответствует триплет АЦА, валину – ЦАА, лизину – ТТТ (рис.).

2 Код вырожден. Всего генетических кодов 64, в то время как кодируется 20 аминокислот, когда они идут на и-РНК синтез белка прекращается. Каждая аминокислота шифруется несколькими генетическими кодами, исключение составляют метионин и триптофан. Эта избыточность кода имеет большое значение для повышения надежности передачи генетической информации. Например, аминокислоте аргинину могут соответствовать триплеты ГЦА, ГЦТ, ГЦЦ и т.д. Понятно, что случайная замена третьего нуклеотида в этих триплетах никак не отразиться на структуре синтезируемого белка.

3. Код универсален. Генетический код один для всех живущих на Земле существ (для человека, животных, растений, бактерий и грибов).

4. Генетический код непрерывный. Нуклеотиды в ДНК не наползают друг на друга, между триплетами (кодонами) отсутствуют пробелы и знаки препинания. Каким же образом участок молекулы ДНК, несущей информацию о структуре одного белка, отграничивается от других участков? Существуют триплеты, функцией которых является запуск синтеза полинуклеотидной цепочки, и триплеты (вставить), которые прекращают синтез.

5. Генетический код специфичный. Нет случаев, когда один и тот же триплет соответствовал бы более чем одной аминокислоте.