Электростатического поля

 

Напряженность и потенциал – различные характеристики одной и той же точки поля. Следовательно, между ними должна существовать однозначная связь.

Работа по перемещению единичного точечного положительного заряда из одной точки поля в другую вдоль оси х на элементарное расстояние равна . С другой стороны, эту работу можно выразить через разность потенциалов на концах отрезка , т.е. . Приравнивая оба выражения для работы, получим , откуда

где символ частной производной подчеркивает, что дифференцирование производится только по оси х. Повторив аналогичные рассуждения для осей y и z, можем найти вектор

(1.20)

где единичные векторы координатных осей x, y и z (орты).

В математике вектор, показывающий направление наибольшего роста скалярной функции П, называется градиентом (обозначается ). Таким образом, формулу (1.20) можно представить в виде

 

(1.21)

т.е. напряженность поля равна градиенту потенциала со знаком «минус». Это означает, что вектор напряженности электростатического поля направлен в сторону убывания потенциала.

В случае однородного поля (например, поля плоского конденсатора) модуль напряженности определяется по формуле

(1.22)

где d – расстояние, разность потенциалов между обкладками конденсатора. Из формулы (1.22) следует, что напряженность электрического поля можно выражать в вольтах на метр (В/м).

Для графического изображения распределения потенциала электростатического поля пользуются эквипотенциальными поверхностями – поверхностями, во всех точках которых потенциал имеет одно и то же значение. Если поле создается точечным зарядом (рис. 1.9), то его потенциал равен Таким образом, эквипотенциальные поверхности в данном случае – концентрические сферы, охватывающие заряд. С другой стороны, линии напряженности поля точечного заряда – радиальные прямые. Следовательно, линии напряженности в случае точечного заряда перпендикулярны эквипотенциальным поверхностям.

Можно доказать, что силовые линии поля всегда нормальны к эквипотенциальным поверхностям. Действительно, все точки эквипотенциальной поверхности имеют одинаковый потенциал, поэтому работа по перемещению заряда вдоль этой поверхности Это означает, что электростатические силы, действующие на заряд, всегда направлены по нормали к эквипотенциальным поверхностям, следовательно, вектор всегда нормален к эквипотенциальным поверхностям и поэтому линии напряженности ортогональны этим поверхностям.

Эквипотенциальных поверхностей вокруг каждого заряда и системы зарядов можно провести бесчисленное множество. Обычно их проводят так, чтобы разности потенциалов между любыми двумя соседними поверхностями были одинаковы. Тогда густота эквипотенциальных поверхностей наглядно характеризует напряженность поля в разных точках: там, где эти поверхности расположены гуще, напряженность поля больше.