рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ПРАКТИЧЕСКАЯ ЧАСТЬ

ПРАКТИЧЕСКАЯ ЧАСТЬ - раздел Физика, ЗАНЯТИЯ ПО ФИЗИКЕ Методы Определения Механических Свойств У Биологических Тканей Аналогичны Мет...

Методы определения механических свойств у биологических тканей аналогичны методам определения этих свойств у технических материалов. При экспериментальных исследованиях упругих свойств костной ткани будем считать, что кость имеет сплошное строение, однородна и изотропна, т.е. обладает одинаковыми механическими свойствами по всем направлениям.

Существуют различные способы определения модуля упругости твердых тел. В данной работе модуль упругости определяется по деформации изгиба.

Если прямую упругую пластину свободно положить на твердые опоры и нагрузить посредине грузом Р, то пластина изогнется ( рис. 3).

 

 

Рис. 3

 

 

При таком изгибе верхние слои пластины будут испытывать сжатие, а нижние – растяжение. Слой же, расположенный посредине, не испытывает ни растяжения, ни сжатия. Этот слой называют нейтральным, он сохранит свою длину и только прогнется. Перемещение l, которое получает середина пластины, называют стрелой прогиба. Она тем больше, чем больше нагрузка, и зависит от модуля упругости материала. В теории сопротивления материалов доказано, что стрела прогиба находится по формуле

,

где В – коэффициент, зависящий от размеров тела.

Для прямой пластины : ,

где L – длина, a – ширина, b – толщина пластины.

Подставив это выражение в формулу для стрелы прогиба, получим

.

Отсюда модуль упругости рассчитывается по формуле

Интересно отметить, что сопротивление изгибу оказывают только те слои, которые растягиваются или сжимаются. Чем ближе к нейтральному слою расположен слой, тем меньшее сопротивление он оказывает. Нейтральный слой сопротивления почти не оказывает. Поэтому если внутренние слои образца будут отсутствовать, то его сопротивление изгибу почти не изменится, но вес образца уменьшится значительно. С точки зрения экономии материала и уменьшения веса выгодно использовать полые стержни (трубки). Это широко используется в технике.

Трубчатую форму имеют и многие кости человека, животных, птиц. Трубчатыми являются также стебли некоторых растений.

Однако нельзя сколь угодно уменьшать толщину, так как тонкие трубки оказывают малое сопротивление изгибу. Должно соблюдаться вполне определенное соотношение внешнего и внутреннего диаметров трубы.

ОПИСАНИЕ УСТАНОВКИ

Установка для определения модуля упругости состоит из платформы 1, на которой находится опора 2 для образца 8 (рис. 4).

Рис. 4.

 

По краям опоры на стойках с помощью специальных винтов 3 закреплена планка 4, в которую вмонтирован индикатор перемещения 5, измеряющий стрелу прогиба. На верхнем конце упора индикатора 6 находится чашечка 6 для грузов.

Регулировка планки по высоте производится с помощью винтов. Планку необходимо устанавливать на такой высоте, чтобы чашечка была приподнята (т.е. не лежала на ободе индикатора).

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Линейкой измерить длинуL( длина L - расстояние между внутренними краями опоры, так как только эта часть образца испытывает деформацию изгиба). Результат измерений записать в табл. 1.

2. С помощью микрометра измерить ширину a образца костной ткани. Результаты записать в табл. 1.

3. Микрометром измерить толщину образца b 5 раз и записать в табл. 1.

Таблица 1

Костная ткань L= P=
  № п/п            
                 
                 
                 
                 
                 
Сумма                  
Среднее                  

 

4. Положить образец на опору и подвести нижний конец упора индикатора к центру образца.

5. Поворотом шкалы совместить нуль индикатора со стрелкой.

6. Положить груз в чашечку на индикатор и измерить стрелу прогиба по красной шкале. Измерения провести 5 раз при одной и той же нагрузке и записать в таблицу.

7. Проделать аналогичные измерения для стального образца. Результаты измерений записать в табл. 2.

Таблица 2

Сталь L= P=
№ п/п ai
     
     
     
     
     
Сумма      
Средне      

 

8. Вычислить средние значения для образцов костной ткани и стали.

9. Рассчитать средние значения модуля упругости для костной ткани и стали по формуле

.

 

10. Найти абсолютные погрешности отдельных измерений ширины, толщины и стрелы прогиба.

11. Найти погрешность DL по формуле , где для линейки Dпр= 0,7 мм, Dокр= 0,5 мм.

12. Вычислить суммарную погрешность Da:

D a=, где .

 

Для рекомендуемой надежности a= 0,95 и числа измерений n = 5 ta,n = 2,8.

Для микрометра и индикатора перемещения Dпр = 0,007 мм, Dокр = 0,005 мм.

13. Аналогично рассчитать суммарные ошибки Db и Dl.

14. Вычислить относительную погрешность измерения модуля упругости по формуле

.

 

15. Найти абсолютную погрешность измерения модуля упругости:

.

16. Записать окончательный результат измерения модуля упругости в виде

.

17. Сравнить модули упругости костной ткани и стали.

 

 

КОНТРОЛЬНЫЕ ВОПРОСЫ

 

1. Механические свойства твердых тел. Виды деформаций.

2. Механизм упругости твердых тел и полимеров.

3. Закон Гука. Предел упругости, предел прочности, текучесть.

4. Механическое напряжение, абсолютная и относительная деформация.

5. Модуль Юнга, его физический смысл и единицы измерения.

6. Механические свойства костной ткани. Состав и строение костной ткани.

7. Методика определения модуля Юнга по деформации изгиба.

8. Расчет погрешности измерений по результатам данной лабораторной работы.

 

 

 

– Конец работы –

Эта тема принадлежит разделу:

ЗАНЯТИЯ ПО ФИЗИКЕ

высшего профессионального образования... Пермская государственная медицинская академия имени академика Е А Вагнера...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ПРАКТИЧЕСКАЯ ЧАСТЬ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Расчет ошибок прямого измерения
Пусть проведено n измерений некоторой величины Х. В результате получен ряд значений этой величины: Наиболее вероятным

Расчет ошибок косвенного измерения
Пусть искомая величина Z является функцией двух переменных: X и Y, т.е Z=f(x, y). Установлено, что абсолютная ошибка функции y=f(x) равна произв

Микрометр
Рис.3 Прибор для измерения линейных

ОПИСАНИЕ УСТАНОВКИ
Физический маятник (рис.2) состоит из металлического тела прямоугольной формы с вырезами. Осью вращения служит ребро приз

ГИДРОДИНАМИКИ И РЕОЛОГИИ
ТЕОРИЯ Линии и трубки тока. Уравнение неразрывности струи Гидродинамика – раздел гидроаэромеханики, в котором изучается движение несжимаем

Коэффициент вязкости
Вязкость – одно из важнейших явлений, наблюдающихся при движении реальной жидкости. Всем реальным жидкостям (и газам) в той или иной степени присуща вязкость, или внутреннее трение.

Понятие о числе Рейнольдса
  Жидкость, протекающую по цилиндрической трубе радиуса R, можно представить разделенной на концентрические слои (рис.1

Определение коэффициента вязкости методом Стокса
Приборы и принадлежности: стеклянный цилиндр с кольцевыми метками, исследуемая жидкость, дробинки, микрометр, секундомер, линейка, термометр. Английским физиком и математиком Стокс

Измерение коэффициента вязкости жидкости вискозиметром Гесса
  Приборы и принадлежности: вискозиметр Гесса, эталонная жидкость – дистиллированная вода, исследуемая жидкость, вата, спирт. Вискозиметр Гесса позволяет измерить вели

ИЗУЧЕНИЕ АППАРАТА ДЛЯ ГАЛЬВАНИЗАЦИИ
Цель работы:изучить действие постоянного тока на ткани и органы, лечебные методики - гальванизация, лечебный электрофорез, устройство и принцип действия аппарата для галь

ГАРМОНИЧЕСКОГО ПЕРЕМЕННОГО ТОКА
  Цель работы:определить индуктивность катушки, емкость конденсатора; экспериментально проверить закон Ома для полной цепи переменного тока. Приборы и принадлежност

Цепь переменного тока с активным сопротивлением
Активным ( омическим ) сопротивлением в цепях переменного тока называют сопротивление, в котором происходит необратимый процесс превращения электрической энергии в какой-либо иной вид, например, в

Индуктивность в цепи переменного тока
Рассмотрим цепь переменного тока, в которую включена катушка индуктивностью L ( Рис.3,а). Пусть напряжение в цепи изменяется по закону u=Umsi

Емкость в цепи переменного тока
Рассмотрим цепь переменного тока, в которую включен конденсатор С( Рис.4,а).  

Цепь переменного тока с активным, индуктивным
и емкостным сопротивлениями Рассмотрим основные соотношения электрических величин в цепи переменного тока с индуктивностью, емкостью и активным сопротивлением, соедине

Импеданс тканей организма
Ткани организма представляют собой по электрическим свойствам разнородную среду. Органические вещества ( белки, жиры, углеводы и др.), из которых состоят плотные части тканей, являются диэлектрикам

Электронно-лучевая трубка
Электронно-лучевая трубка является главным рабочим элементом осциллографа. Она представ

Помнить!
Сила Кулона для отрицательных частиц направлена против вектора напряженности электрического поля, который касателен к силовой линии ! Возможность вылета электрона за пределы модулятора обусловли

Система отклоняющих пластин
Данная система состоит из двух пар взаимно перпендикулярных пластин: YY и XX. Электронный луч, двигаясь в электрическом поле пластин, отклоняется к пластине, потенциал которой положит

Генератор развертки
  Принцип работы генератора пилообразного нап

Чувствительность вертикального входа осциллографа к переменному напряжению
Одним из основных параметров электронно-лучевых трубок является чувствительность. Чувствительность показывает, на сколько миллиметров перемещается

Электронного осциллографа
Включить прибор в сеть (220В), дать ему прогреться в течение 3 минут. 2. Выключить генератор развертки, поставив ручку «Диапазон частот» в положение «0». 3. Сфокусировать электрон

ИЗУЧЕНИЕ АППАРАТА НИЗКОЧАСТОТНОЙ ТЕРАПИИ
Цель работы:ознакомление с аппаратом низкочастотной терапии, изучение механизма действия его импульсных токов на ткани организма, определение периодов коле

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ
  1. Соберите рабочую блок-схему    

ИНДУКТОТЕРМИЯ
Метод физиотерапии, в основе которого лежит воздействие переменным высокочастотным магнитным полем (n~107 Гц), Поле вызывает в тканях вихревые электрические токи, энергия

УВЧ-ТЕРАПИЯ
Метод физиотерапии, в основе которого лежит воздействие переменным электрическим полем ультравысокой частоты (n~107 Гц). Основной эффект- нагревание поверхностных и глубоколежащ

МИКРОВОЛНОВАЯ ТЕРАПИЯ
Метод физиотерапии, в основе которого лежит воздействие на ткани организма электромагнитных волн частотой ~108 Гц (СМВ-сантиметровая терапия) и частотой ~109 Гц (ДМВ- дециметр

ДЕЙСТВИЕ ПЕРЕМЕННОГО ЭЛЕКТРИЧЕСКОГО
ПОЛЯ УВЧ НА ЭЛЕКТРОЛИТЫ Под действием электрического поля УВЧ ионы электролита совершают вынужденные колебания с частотой поля. При этом увеличивается ток проводимости, а энергия эл

ПОЛЯ УВЧ НА ДИЭЛЕКТРИКИ
Рассмотрим диэлектрик в переменном электрическом поле УВЧ. В реальном диэлектрике существует небольшой ток проводимости и ориентационная поляризация молекул. Это приводит к поглощению подводимой эн

ИССЛЕДОВАНИЕ РАБОТЫ ДАТЧИКОВ
  Цель работы:1. Изучение тензорезистивного проволочного датчика и получение его характеристик. 2. Изучение датчика температуры - термопары.

Генераторные датчики
В качестве генераторных датчиков рассмотрим термопару, пьезоэлектрический датчик и индукционный датчик. Термопара Термопары относятся к термоэлек

Параметрические датчики
Примерами могут служить емкостные, индуктивные, резистивные датчики. Емкостной датчик В качестве примера может быть использован, например, плоский конденсатор. Емкость C

Датчики медико-биологической информации
  Датчики медико-биологической информации преобразуют биофизические и биохимические величины в электрические сигналы, «переводят» информацию с «физиологического языка» организма на яз

Изучение тензорезистора
  Проволочный тензорезистор (рис 5.) изготавливается из тонкой константановой пр

Изучение датчиков температуры
  В данной работе в качестве датчика температуры используется термопара, изготов

Фокусное расстояние
объектива - несколько миллиметров, окуляра - несколько сантиметров.   Схема оптической системы микроскопа и ход лучей в нем показаны на рис.1. Соотно

Разрешающая способность микроскопа
Технически возможно создать оптические микроскопы, объективы и окуляры которых дадут общее увеличение 1500-2000 и больше. Однако это нецелесообразно, так как возможность различить мелкие детали пре

Полезное увеличение микроскопа ограничено его разрешающей способностью и разрешающей способностью глаза.
Разрешающая способность глаза характеризуется наименьшим углом зрения, при котором человеческий глаз еще различает раздельно две точки предмета. Она лимитируется дифракцией на зрачке и расстоянием

Некоторые распространенные и специальные методы оптической микроскопии
1. Метод светлого поля в проходящем свете. Наиболее распространенный метод для исследования прозрачных окрашенных и неокрашенных объектов. Объект освещается снизу и выглядит цветным

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ
1. Измерить микрометром толщину проволоки d пять раз. Данные занести в таблицу 1. 2. Вычислить среднее значение диаметра , з

ФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОКАРДИОГРАФИИ
Цель работы: изучить принцип работы электрокардиографа, записи электрокардиограммы и ее анализа. Приборы и принадлежности:электрокардиограф.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ
1. Заземлить прибор. 2. Установить все органы управления ( тумблеры, кнопки и пр.) в исходное положение. 3. Включить прибор в сеть. 4.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги