Опыт франка и герца

В основе современной теории атома лежит экспериментальный факт, установленный в опытах Джеймса Франка и Густава Герца в 1914 г. В этих опытах исследовалось распределение скоростей электронов до и после соударения их с атомами и молекулами разреженного газа. Было найдено, что при скоростях электронов, меньших некоторой критической скорости, соударение происходит вполне упруго – электрон не передаёт атому своей энергии, а изменяет лишь направление импульса. При скоростях, достигающих некоторой критической скорости, столкновение электрона с атомом становится неупругим – электрон теряет всю энергию, передавая её атому, который после этого переходит в другое состояние с большей энергией. Отсюда следовало, что атом либо вообще не воспринимает энергию, либо воспринимает её в количествах, равных разности энергий в двух стационарных состояниях, характерной для данного атома.

Схема установки Франка – Герца показана на рисунке 1. В вакуумный баллон (трубку) впаяны термокатод К, сетки С и анод А. Трубку заполняли парами исследуемых веществ (ртути, гелия и др.) под небольшим давлением (~ 1 мм.рт.ст.). Электроны, вылетевшие из катода, ускорялись разностью потенциалов U(1) , приложенной между катодом К и сеткой С1 . Эта разность потенциалов регулируется потенциометром П1. Между сеткой С2 и анодом А включается источник постоянного напряжения примерно 0,5 В. Этот источник создаёт электрическое поле, задерживающее электроны при их движении к аноду. При этом анод достигают только те электроны, энергия которых больше величины энергии задерживающего потенциала.

. (1)

Исследовалась зависимость тока I, регистрируемого гальванометром (микроамперметром) G, помещённым в цепь анода А, от напряжения U.

Рисунок 1 - Схема установки Франка и Герца

Полученный результат для случая с парами ртути показан на рисунок 2.

Рисунок 2 - Зависимость силы тока от напряжения

Максимумы тока I наблюдались при потенциалах U = 4,1; 9,0; 13,9 В. Разность между этими значениями постоянна и равна 4,9 В (с точностью до 0,1 В). Если к приложенному извне ускоряющему потенциалу прибавить контактную разность потенциалов, которая в опыте равнялась 0,8 В, то получается ряд значений энергий электрона Е = 4,9; 9,8; 14,7 эВ, в котором первое значение совпадает с разностью между соседними значениями. Максимумы на кривой рисунка 2 имеют простое истолкование. Пока энергия электронов меньше 4,9 эВ, они испытывают с атомами ртути упругие соударения, их энергия достаточна для преодоления разности потенциалов между электродами С и А и ток возрастает с увеличением потенциала по обычному закону. При потенциалах кратных 4,9 В удары становятся неупругими, электроны отдают всю свою энергию атомам ртути и задерживаются сеткой. В результате ток в цепи анода резко падает. Если энергия электронов заметно превосходит величину, кратную 4,9 эВ, то такие электроны, потеряв часть своей энергии при неупругом столкновении с атомами ртути, сохраняют достаточно энергии для преодоления задерживающего напряжения и ток начинает возрастать.

Ускоряющий потенциал 4,9 В называется резонансным потенциалом атома ртути. Атом любого химического элемента характеризуется своим значением резонансного потенциала.

Дальнейшие исследования показали, что у атомов данного сорта существует не одно дискретное возбуждённое состояние, а множество таких состояний. У атома ртути, например, кроме резонансного потенциала 4,9 В имеется второй критический потенциал 6,7 В.

Таким образом, опыты Франка и Герца показали, что энергия атомов изменяется дискретно. Тем самым было получено экспериментальное подтверждение постулатов Бора.