рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Рух тіл змінної маси

Рух тіл змінної маси - раздел Физика, Рух системи матеріальних точок. Методика розв`язання задач про зіткнення. Закон збереження повної механічної енергії   Термін “Змінна Маса” В Класичній Механіці Має Інше Значення, ...

 

Термін “змінна маса” в класичній механіці має інше значення, ніж у теорії відносності. У рамках класичної механіки досліджується повільний рух об’єктів, чия маса змінюється через втрати або набуття певної кількості речовини. Наприклад, дощова крапля збільшує свою початкову масу під час падіння у повітрі, яке є перенасиченою водяною парою; або інший приклад – маса реактивного літака зменшується за рахунок витікання газу, який утворюється у двигунах через згоряння палива. Повільність руху означає, що досліджуються випадки швидкостей, що є значно меншими за швидкість світла.

Рівняння руху механічних об`єктів, що мають змінну масу, принципово не відрізняються від звичайного другого закону Ньютона, бо вони є наслідками законів Ньютона. Ці рівняння становлять певний інтерес, головним чином, у зв`язку з розвитком ракетної техніки.

Елементарну теорію руху ракет побудовано на припущенні, що ракета разом з газами, що витікають, створює замкнену систему, нехтуючи при цьому тертям, дією зовнішніх сил гравітації сусідніх космічних об`єктів і таке інше. Повний імпульс такої системи з часом не змінюється. Газ, що утворюється при згорянні палива, викидається з ракети з великою швидкістю, що в свою чергу діє на ракету, надаючи їй прискорення у напрямку, який є протилежним до напрямку витікання газу.

Здобудемо рівняння, що описує рух тіл змінної маси. Для визначеності (яка не обмежує загальності) вважатимемо, що йдеться про політ ракети. Для цього скористаємося стандартним методом: розглянемо імпульс механічної системи «ракета плюс гази» у довільний момент часу t і у наступний, фізично безкінечно близький, момент часу t+dt, і знайдемо зміну імпульсу за цей проміжок часу.

Нехай у довільний момент часу ракета разом із паливом має масу m(t) і рухається зі швидкістю (t). При цьому її імпульс дорівнює (t)=m(t)(t). За елементарний проміжок часу маса ракети та її швидкість отримали, відповідно, прирости та : m(t)® m(t+dt)= m(t)+dm, (t)®(t+dt)=(t)+d . Тому кількість руху (імпульс) ракети разом із паливом, що в ній залишиться, на цей час стане добутком (t)® (t+dt)=. Крім того, на момент часу t+dt в системі виникне ще один компонент - це газ, який полишає ракету внаслідок згоряння палива. Маса новоутвореного газу , його швидкість відносно інерціальної системи відліку . При цьому слід узяти до уваги, що , оскільки повна маса системи «ракета плюс паливо» з часом зберігається. Таким чином, повний імпульс системи «ракета плюс паливо» в момент часу дорівнює:

 

. (1.3.7)

 

Обчислимо зміну імпульсу за проміжок часу dt:

 

(1.3.8)

 

Величиною другого порядку малості слід знехтувати. Тоді для зміни величини імпульсу можна записати: . Позначимо швидкість витікання газу відносно ракети: , тоді

 

(1.3.9)

 

З другого закону Ньютона маємо:

 

, (1.3.10)

 

де - це геометрична сума усіх зовнішніх сил, що діють на ракету. Порівнюючи два вирази (1.3.9) та (1.3.10) для , дістаємо:

 

(1.3.11)

 

Звідси маємо: , або в формі рівняння Мещерського:

 

. (1.3.12)

Величину називають реактивною силою. У випадку польоту ракети dm/dt<0, тому реактивна сила штовхає ракету у напрямку, протилежному до того, в якому гази вилітають із сопла двигуна ракети.

Розглянемо випадок, коли , тобто коли ракета летить у космосі далеко від Землі та інших планет та зірок так, що силою гравітаційного тяжіння можна знехтувати, або коли реактивна сила є набагато більшою за результуючу решти сил. Тоді рівняння (1.3.12) спрощується:

 

. (1.3.13)

 

Нехай ракета рухається прямолінійно, наприклад, вздовж осі . Тоді вектори та орієнтовано у взаємно протилежних напрямках, а маса ракети зменшується (dm/dt<0). Спроектуємо рівняння (1.3.13) на вісь і дістанемо скалярне рівняння:

 

(1.3.14)

 

Обмежимо наше дослідження простим випадком сталої швидкості витікання газів, коли >0. Виконаємо процедуру поділу змінних у співвідношенні (1.3.14), що в цьому випадку полягає у тому, щоб поділити рівняння (1.3.14) на m:

(1.3.15)

 

Проінтегруємо рівняння (1.3.15) від деякого початкового моменту часу t=t0, коли V(t0)=V0 і m(t0)=m0, до поточного моменту часу t

 

(1.3.16)

 

та здобудемо:

 

. (1.3.17)

Рівняння (1.3.17) показує: для того, щоб ракета набула найбільшої швидкості, по-перше, слід обладнати її гарним двигуном з найбільшою швидкістю витікання газів із сопла ракети і, по-друге, виготовити ракету з найменшою корисною масою, m0>>m(t). При чому перший шлях є більш ефективним, бо лінійна функція зростає швидше за логарифмічну.

Рівняння (1.3.17) можна переписати ще так:

 

(1.3.18)

 

Коли , тоді з (1.3.18) здобуваємо формулу Ціолковського:

 

(1.3.19)

 

– Конец работы –

Эта тема принадлежит разделу:

Рух системи матеріальних точок. Методика розв`язання задач про зіткнення. Закон збереження повної механічної енергії

Для визначення констант інтегрування застосуємо початкові умови це початкова швидкість руху кінця мотузки яка виникає внаслідок падіння муфти...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Рух тіл змінної маси

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Перетворення Галілея
  Перетворення Галілея показують, в який спосіб пов’язані між собою координати механічного об’єкта у різних інеpціальних системах відліку. Питання про перетворення координат, якщо вон

Інваріанти перетворення Галілея
  Коли певна фізична величина не змінює свого числового значення при перетворенні координат, то це значить, що вона має об`єктивне значення, яке не залежить від обраної системи відлік

Закон збереження імпульсу
  Виходячи з другого та третього законів Ньютона, можна здобути закони збереження імпульсу та енергії. Цікаво, що існує також можливість пройти й зворотнім шляхом, тобто вивести закон

Теорема про рух центру мас
  Центром мас (або центром інерції) механічної системи (системи матеріальних точок) називають таку уявну точку, радіус-вектор якої визначається за наступною формулою:  

Робота та кінетична енергія
  Кількість енергії, яку людство одержує з надр Землі у формах, які є зручними для сучасного промислового виробництва, має свою межу, до якої вже недалеко. Добробут людства безпосеред

Зіткнення
  Терміном зіткнення у механіці позначають процес взаємодії між механічними об`єктами у широкому розумінні, тобто це не є обов`язково явище їхнього торкання один з одним з наступним в

Силове поле
  Силове поле – це область простору, де в кожен момент часу для кожної точки простору відома сила, що діє на фізичне тіло, яке знаходиться в цій точці простору. Під словами «відома си

Класифікація сил
  Існують сили, що мають силове поле, та такі, що його не мають. Силового поля не мають сили тертя, опору та Лоренца, бо вони залежать від напрямку руху. При цьому сили тертя залежать

Потенціальна енергія
  Властивості потенціальних сил дозволяють ввести поняття про потенціальну енергію U. Потенціальною енергією для матеріальної точки у певному положенні називають роботу A

Зв’язок потенціальної сили та потенціальної енергії
  Як було показано раніше, механічна робота, за визначенням, пов’язана з силою в наступний спосіб: . Оскільки механічну роботу

Просторові межі механічного руху
  Якщо у механічній системі відсутні дисипативні та неконсервативні сили, тоді зберігається сума енергій: K+Uº E=const. Оскільки за визначенням кінетична енергія не може б

Закон збереження моменту імпульсу
  Назвемо моментом імпульсу та моментом сили , відповідно, наступні в

Рух матеріальної точки у полі центральної сили
  Для матеріальної точки, яка рухається в полі центральної сили за умов відсутності дисипації, виконується закон збереження механічної енергії. До того ж, як показано у попередньому п

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги