О некоторых недостатках квантовой механики

 

Как известно, квантовая механика – это теория, устанавлива-ющая способ описания и законы движения микрочастиц – элементарных частиц, атомов, молекул, атомных ядер и их систем, например, кристаллов. Квантовая механика устанавлива-ет также связь величин, характеризующих частицы и системы с непосредственно измеряемыми в опытах физическими величинами [1, 2].

Квантовая механика позволила во многом уяснить строение атома, природу химической связи, строение атомных ядер, свойства элементарных частиц. На основе квантовой механики удалось в значительной степени объяснить свойства газов и твердых тел, такие явления как ферромагнетизм, сверхтекучесть и сверхпроводимость, представить природу таких астрообъектов, как Белые карлики и нейтронные звезды, прояснить механизм протекания термоядерных реакций в солнце и звездах и многое другое. Некоторые крупнейшие технические достижения 20-го века, такие, как работа ядерных реакторов, полупроводников, используемых в новейшей технике, основаны по существу на законах квантовой механики, с ее помощью осуществлен направленный поиск и созданы новые материалы, в том числе магнитные, полупроводниковые и сверхпроводящие.

Таким образом, налицо определенное прикладное значение квантовой механики. Можно считать, что положения квантовой механики прошли проверку практикой, которая и есть критерий истины. И все же…

Среди физиков-прикладников, а иногда и среди физиков-теоретиков временами раздаются голоса о том, что методы квантовой механики во многих случаях не позволяют произвести необходимые расчеты. Энергию состояния даже относительно простых атомов не всегда можно определить методами квантовой механики. Само толкование волновой функции как «плотности распределения вероятности» нахождения точечного (!) электрона в данной точке пространства вызывает недоумение: получается, что электрон обладает «свободой воли», а никаких причин внутреннего механизма явлений как бы не существует!

Сама методология квантовой механики опирается на «принципы», введенные различными авторами (принцип Паули, принцип неопределенности Гейзенберга, принцип суперпозиции и т. п.), всякого рода идеализации, фактический отказ от попыток понимания структур частиц, приводящий к энергетическим парадоксам, и многое другое, вызывает все большие сомнения в ее правомерности. Ведь реальные частицы наверняка имеют какую-то структуру, а никаких «энергетических парадоксов» в природе не наблюдается! Что касается «принципов», то природа их вообще не знает. Задачей же исследователя является не навязывание природе своих взглядов и «принципов», а, наоборот, выяснение того, почему и в каких случаях те или иные законы имеются в природе и каковы границы распространения этих законов, и нет каких-либо от них отклонений.

К недостаткам квантовой механики следует отнести, например, такие, как нечеткость причинно-следственных связей явлений, отсутствие понимания причин квантования, не- наглядность физической интерпретации квантовых чисел. Все это не только затрудняет понимание внутренней сущности квантовой механики, но и не позволяет развивать ее.

На недостаточность методов квантовой механики, оперирующей только с так называемыми наблюдаемыми величинами, обращали внимание многие исследователи. Так, профессор МГУ А.К.Тимирязев еще в 1954 г. писал [3]:

«..никто не станет отрицать всех успехов, достигнутых квантовой механикой, но нельзя слепо верить в то, что квантовая механики уже достигла абсолютного совершенства, и на все, на что она не дает до сих пор ответа, ответ принципиально не может быть найден.

«Теория» принципиально не наблюдаемых величин не выдерживает ни малейшей критики. Было время, когда говорили, что молекулы, атомы и электроны принципиально не наблюдаемы. Но вот спинтарископ Крукса, счетчик Гейгера, камера Вильсона, опыты с броуновскими частицами. Если и не сделали все эти «принципиально не наблюдаемые» величины видимыми, то, во всяком случае, они прекрасно показали действия отдельных частиц и молекулярных движений. Соединение интерферометра с телескопом позволяет измерять диаметры звезд, что казалось раньше «принципиально недоступным». В современном электронном микроскопе видны молекулы белка, обладающего, правда, очень большими молекулами, но ведь электронный микроскоп еще далеко не дал всего, что он может дать, и потому не исключена возможность увидеть пространственную решетку кристалла. Вот почему лучше вообще вычеркнуть из всех наших рассуждений какие-либо упоминания о принципиально наблюдаемых и не наблюдаемых величинах».

Следует ли рассматривать всю классическую физику как частный случай квантовой? Не правильнее ли дополнять классическую физику там, где это действительно требуется, квантовой физикой, а не рассматривать квантовую физику как нечто самодовлеющее, частным случаем которого является вся прежняя классическая физика? Такая постановка вопроса вполне правомерна, поскольку законы природы едины и, в принципе, никаких причин для обособления микромира от макромира нет, по крайней мере, никто такого обособления не сформулировал. Именно поэтому в настоящее время рядом исследователей ставится под сомнение правомерность обособления законов микромира от всех остальных законов природы. Найдены многочисленные примеры квантовых явлений в нашей обычной реальности. Рассмотрены аналогии между явлениями микро- и макромиров. Делаются небезуспешные попытки раскрыть внутренний механизм квантовых явлений, используя, в частности, и представления о среде, заполняющей мировое пространство и являющейся строительным материалом для элементарных частиц вещества. Движения среды воспринимаются как те или иные физические силовые поля. Некоторые авторы показали, что применение обычных методов классической физики к объектам микромира не только правомерно, но и целесообразно, так как может дать в ряде случаев то, что не могут позволить методы квантовой механики: понять структуру микрочастиц, рассчитать параметры атомов, объяснить физическую суть природы корпускулярно-волнового дуализма и многое другое и тем самым по-иному взглянуть на проблему взаимоотношений микро- и макромиров и на устройство природы в целом.