Исследование сопротивления усталости при нестационарном нагружении

Использование характеристик сопротивления усталости, полученных при стационарном нагружении (), не обеспечивает достаточно высокой точности в оценке долговечности при нестационарном нагружении и поэтому по результатам программных испытаний на усталость определяются соответ­ствующие характеристики усталости, учитывающие влияние изменчивости величины действующих напряжений.

Основной задачей программирования усталостных испытаний является воспроизведение режима испытаний, достаточно близкого к эксплуатацион­ному как по распределению амплитуд циклов, так и по характеру их чере­дования.

Основой такого программирования является сохранение эквивалентности испытательного и эксплуатационного режимов по степени создаваемогоимиусталостного повреждения при одинаковом общем числе циклов нагружения до разрушения. Практически замена эксплуатационного спектра с произволь­ным характером чередования амплитуд напряжений некоторым упорядочен­ным производится с таким расчетом, чтобы каждый уровень спектра нагрузок за время испытаний воспроизводился не менее 10—20 раз. Это означает, что весь предполагаемый ресурс работы детали (или долговечность) разбивается на 10—20 и больше одинаковых блоков, в пределах каждого из которых уровень амплитуд напряжений изменяется от. минимального до максимального в .соответствии с характером спектра. Изменение амплитуд циклов нагруже­ния может быть выполнено непрерывным (с использованием, например, про­фильных кулачков при испытании на изгиб с вращением), либо ступенчатым.

Верхний уровень напряжений спектра определяется в соответствии с ве­личинами возможных максимальных напряжений в эксплуатации, а нижний уровень программируемого режима—с учетом минимальных повреждающих нагрузок. Экспериментально установлено, что минимальными повреждающими напряжениями оказываются напряжения, составляющие . После установления верхней и нижней границ спектра нагружения, весь диапазон изменения амплитуд напряжений в пределах разбивается на разные интервалы (ступени). Рекомендуется, чтобы число сту­пеней нагрузки в блоке было не менее 6—8. Достаточно подробно вопросы программирования режимов нагружения при испытаниях на усталость рассмот­рены в литературе, в том числе обзорной [13].

Программа нагружения составляется следующим образом. За исходные данные принимается эксплуатационный спектр нагрузки, получаемый в результате статистической обработки достаточно представительных по количе­ству данных тензометрирования в условиях эксплуатации. Пусть, например, спектр нагружения описывается логарифмически нормальным законом с пара­метрами: среднее значение и среднее квадратическое отклонение . На рис. 15 представлена кривая усталости детали с пределом выносливости при циклов и показателем степени кривой m=3,6 (кривая 1) и эксплуатационный спектр нагружения в интегральной форме с суммарным числом циклов =107 (кривая 2). Нижняя граница повреждающих напряжений ; верхней границе для рекомендуемой вероятности 10-5 соответ­ствует напряжение . При 6 равных интерва­лах напряжений

определяются их уровни ; середины интервалов и вычисляются вероятности действия напряжений и меньших. Затем вычисляются вероятности действия напряжений в ин­тервале ; как разность смежных значений и определяется чис­ло циклов действия напряжений данной ступени за все время

испытания и число циклов в одном блоке , где z — число блоков.

Как указывалось, число блоков . Ниже приведены результаты рас­чета при z=15.

Форма полученного блока нагружены приведена на рис. 15 (кривая 3). Испытания на усталость с программным нагруженном проводятся на спе­циальных машинах, оснащенных программными устройствами [13].

Сопротивление усталости при нестационарном (программном) нагружении

характеризуется суммой относительных долговечностей, которая выражается

следующим образом:

где А—сумма относительных долговечностей;

—число циклов действия напряжений ;

число циклов действия напряжений до разрушения;

кривая накопленного числа циклов;

функция распределения действующих напряжений

Условие суммирования позволяет вычислять запас прочности по напряже­ниям и по долговечности при нестационарном нагружении [9].