Проверить правильность соотношения .

3. При постоянной массе груза, подвешенного на нити измерить угловое ускорение и момент инерции для двух различных положений грузов на крестовине. Проверить выполнение соотношения .

Результаты занести в таблицу.

Экспериментальную проверку уравнения движения можно осуществить двумя способами:

1. При неизменном моменте инерции прибора должно сохраняться соотношение.

J=

2. При постоянной массе груза, подвешенного к нити (при постоянном моменте силы) должно выполняться соотношение

J11 – J12 = 4 m (R 12 – Rl22)

где m – масса грузов крестовины, R 1 и R 2 – расстояние от оси вращения до центра тяжести грузов крестовины.

 

Контрольные вопросы:

1. Что называется моментом силы относительно точки и относительно неподвижной оси?

2. От чего зависит момент инерции тела, какую роль он играет во вращательном движении?

3. Как в данной работе определяется ускорение поступательного движения грузов, подвешенных к нити прибора; получите выражение для расчёта - этого ускорения.

4. Чем обусловлена разница в экспериментальном и теоретически полученных значениях момента инерции?

5. На каком законе основана данная работ? Сформулируйте этот закон.

6. Какая связь существует между линейным и угловым ускорениями? При каком условии она существует?

7. Момент какой силы приводит маятник Обербека во вращательное движение ? Как можно изменить момент силы в данной работе?

9. Какая теорема используется для вычисления момента инерции цилиндров? Как влияет на момент инерции цилиндров расстояние, на котором они расположены на стержнях?

10. Как влияет на угловое ускорение увеличение момента силы при неизменном моменте инерции? Как влияет на угловое ускорение увеличение момента инерции при неизменном моменте силы?

Лабораторная работа № 8

 

Маховое колесо

 

Цель работы:определить момент инерции махового колеса и момент сил трения.

Приборы и принадлежности: маховое колесо, секундомер, штангенциркуль, линейка, угольник.

 

Маховое колесо представляет собой массивное тело, вращающееся на подшипниках вокруг горизонтальной оси. На вал колеса радиуса r наматывается нить с подвешенным грузом массы m (рис. 16).

Опускаясь с некоторой высоты h1, груз раскручивает колесо и, достигнув нижней точки, начинает подниматься вверх за счет запасенной кинетической энергии колеса. При отсутствии сил сопротивления высота подъема груза h2 была бы равна h1 в соответствии с законом сохранения механической энергии. В действительности же, ввиду действия сил трения в подшипниках, сопротивления воздуха, а также выделения тепла в нити, груз поднимается на несколько меньшую высоту. В рассматриваемом случае главной причиной потерь энергии является действие сил трения.

Известно, что если в замкнутой системе действуют неконсервативные силы (например, силы трения), то работа этих сил равна изменению полной механической энергии системы:

DE = E2 - E1 = Aтр.

 

Рассмотрим систему колесо-груз в крайних положениях h1 и h2, когда кинетическая энергия равна нулю, т.е. механическая энергия системы равна потенциальной энергии груза.

Тогда

DE = E2 - E1 = mgh2 - mgh1 = Aтр= -

 

где Мтр- модуль момента сил трения. Знак «минус» в правой части указывает на то, что работа сил трения отрицательна. Интеграл берется в пределах полного угла поворота колеса при опускании и подъеме груза.

Момент сил трения можно считать практически не зависящим от скорости вращения, т.е. постоянной величиной. Следовательно.

Ат р= - Мтр Dj.

Пусть h1 и h2 отсчитываются от нижнего положения груза. Груз при движении проходит расстояние h1+h2,а колесо поворачивается на угол

В результате

 

Рис. 16

На колесо действуют только две силы с отличными от нуля моментами – сила натяжениянити Т и сила трения (рис.16). Поэтому закон движения SМI = Je, запишется в виде:

T×r - Mтр = Je,

где e - угловое ускорение колеса.

Второй закон Ньютона для груза:

mg – T = ma,

где а– ускорение груза.

Учитывая, что тангенциальное ускорение точек обода вала равно ускорению груза (нить нерастяжима) а = аt,

а = er.

Так как сила трения постоянна, то ускорение постоянно, т.е. применимо уравнение равноускоренного движения

где t1время опускания груза.