рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Пластическая деформация

Пластическая деформация - раздел Механика, Недоказанная и неопровергнутая гипотеза называется открытой проблемой Согнем Немного Стальную Пластинку (Например, Ножовку), А Затем Через Некоторо...

Согнем немного стальную пластинку (например, ножовку), а затем через некоторое время отпустим ее. Мы увидим, что ножовка полностью (во всяком случае на взгляд) восстановит свою форму. Если возьмем такого же размера свинцовую пластинку и на такое же время согнем ее, то она не восстановит свою форму полностью и останется согнутой. Деформации, которые полностью исчезают, как только исчезают деформирующие силы, как у стальной пластинки, называют упругими. Деформации, которые не исчезают по снятии деформирующих сил, как у свинцовой пластинки, называют пластическими.

Строго говоря, не наблюдается ни вполне упругих, ни вполне пластических деформаций. Если стальную пластинку продержать в согнутом состоянии очень долго (например, несколько лет), то по снятии деформирующих сил она не разогнется полностью. Получится остаточная деформация, которая будет тем значительнее, чем дольше пластинка была в деформированном состоянии.

Итак, упругая деформация у всех тел с течением времени переходит в пластическую.

Вещества, у которых упругая деформация в заметной мере переходит в пластическую лишь в течение длительного времени (годы!), называют упругими веществами. Примерами упругих веществ являются сталь, стекло. Вещества, у которых упругая деформация в заметной мере переходит в пластическую в течение короткого времени (секунды, доли секунды), называют пластичными веществами. Примеры: свинец, воск и т. п. Однако если промежуток времени будет слишком мал, то деформация и в пластичном веществе не успеет перейти в пластическую. Например, при очень кратковременной деформации свинцовая пластинка может повести себя так же, как и стальная.

Переход упругой деформации в пластическую зависит еще и от самой деформации. Чем больше деформация, тем меньший промежуток времени требуется для ее перехода в пластическую. Увеличивая деформацию какого-нибудь тела, мы дойдем, наконец, до такой деформации, при которой переход из упругой в пластическую происходит практически мгновенно. Мы говорим в таком случае, что достигли предела упругости. У упругих веществ предел упругости велик, а у пластичных веществ он мал. Заметим, что предел упругости зависит от температуры. Чем выше температура, тем ниже предел упругости у данного вещества.

 

За́мкнутая систе́ма представляет собой систему, в которой отсутствует обмен веществом, энергией и информацией с внешней средой или окружением. Это отличает замкнутую систему от изолированной системы, где допускается обмен информацией, и также от закрытой системы, где возможен обмен энергией. С точки зрения теории бесконечной вложенности материи представление о замкнутой системе является идеализацией, поскольку экранировать любую систему от внешних воздействий одновременно на всех уровнях материи невозможно.

В философии носителей, в которой с помощью синкретной логики выводятся законы философии, связанные с системами, замкнутая система появляется как результат рассмотрения обмена между системами потоками вещества, энергии и информации. [1]

Замкнутая система в механике может быть определена как такая система тел, на которую не действуют внешние силы, либо действия этих внешних сил на тела системы полностью скомпенсированы.

Понятие замкнутой системы используется в лоренц-инвариантной термодинамике, в которой некоторые термодинамические величины определяются через напряжённости, плотности энергии и потоки энергии электромагнитного и гравитационного полей, [2] а также представлены в виде тензоров.

– Конец работы –

Эта тема принадлежит разделу:

Недоказанная и неопровергнутая гипотеза называется открытой проблемой

Физика тесно связана с математикой математика предоставляет аппарат с помощью которого физические законы могут быть точно сформулированы... Тео рия греч рассмотрение... Стандартный метод проверки теорий прямая экспериментальная проверка эксперимент критерий истины Однако часто...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Пластическая деформация

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Принцип относительности в механике
Инерциальные системы отсчета и принцип относительности. Преобразования Галилея. Инварианты преобразования. Абсолютные и относительные скорости и ускорения. Постулаты специальной т

Векторная величина
Векторная величина (вектор) – это физическая величина, которая имеет две характеристики – модуль и направление в пространстве. Примеры векторных величин: скорость (

Вращательное движение материальной точки.
Вращательное движение материальной точки - движение материальной точки по окружности.   Враща́тельное движе́ние — вид механического движения. При

Связь между векторами линейной и угловой скоростей, линейного и углового ускорений.
Мера вращательного движения: угол φ, на который поверн.тся радиус-вектор точки в плоскости, нормальной к оси вращения.   Равномерное вращательное движен

Скорость и ускорение при криволинейном движении.
Криволинейное движение более сложный вид движения, чем прямолинейное, поскольку даже если движение происходит на плоскости, то изменяются две координаты, характеризующие положение тела. Скорость и

Ускорение при криволинейном движении.
Рассматривая криволинейное движение тела, мы видим, что его скорость в разные моменты различна. Даже в том случае, когда величина скорости не меняется, все же имеет место изменение направления скор

Уравнение движения Ньютона
(1) где сила F в общем случа

Центр масс
центр инерции, геометрическая точка, положение которой характеризует распределение масс в теле или механической системе. Координаты Ц. м. определяются формулами

Закон движения центра масс.
Воспользовавшись законом изменения импульса, получим закон движения центра масс: dP/dt = M∙dVc/dt = ΣFi Центр масс системы движется так же, как дв

Галилея принцип относительности
· Инерциальная система отсчёта Инерциальная система отсчёта Галилея

ВНЕШНИЕ И ВНУТРЕННИЕ СИЛЫ
. В механике внешними силами по отношению к данной системе материальных точек (т. е. такой совокупности материальных точек, в которой движение каждой точки зависит от положений или движений всех ос

Кинетическая энергия
энергия механической системы, зависящая от скоростей движения её точек. К. э. Т материальной точки измеряется половиной произведения массы m этой точки на квадрат её скорости

Кинетическая энергия.
Кинетическая энергия - энергия движущегося тела.(От греческого слова kinema - движение). По определению кинетическая энергия покоящегося в данной системе отсчета

Величина, равная половине произведения массы тела на квадрат его скорости.
[Ek]=Дж. Кинетическая энергия - величина относительная, зависящая от выбора СО, т.к. скорость тела зависит от выбора СО. Т.о.

Момент силы
· Момент силы. Рис. Момент силы. Рис. Момент силы, величин

Кинетическая энергия вращающегося тела
Кинетическая энергия – величина аддитивная. Поэтому кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материаль

Работа и мощность при вращении твердого тела.
Работа и мощность при вращении твердого тела. Найдем выражение для работы при вра

Основное уравнение динамики вращательного движения
Согласно уравнению (5.8) второй закон Ньютона для вращательного движения П

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги