рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Работа и кинетическая энергия

Работа и кинетическая энергия - раздел Механика, Курс общей физики (лекции) Раздел I Физические основы механики По Определению, Элементарной Работой Силы ...

По определению, элементарной работой силы на бесконечно малом перемещении называется скалярное произведение этих двух векторов (рис. 6.1):

. (6.1)

α — угол между векторами и , FS = F × Cosα — проекция силы на направление перемещения .

Рис. 6.1

Работа силы — скалярная величина, которая может быть как положительной, так и отрицательной.

Формально знак работы определяется знаком косинуса. Если — Cosα > 0 и работа силы положительна. Сила, направленная в сторону противоположную смещению, совершает отрицательную работу. Если вектор силы образует с вектором перемещения или скорости прямой угол, то работа такой силы равна нулю. Так, работу не производит центростремительная сила при движении по круговой орбите, сила тяжести и сила реакции опоры при перемещении тела по горизонтальной поверхности.

Для того чтобы вычислить работу на конечном участке траектории, нужно рассмотреть криволинейный интеграл вектора вдоль этого участка траектории:

. (6.2)

Если в процессе движения на тело действует система сил , , …, , то работа их равнодействующей равна алгебраической сумме работ каждой силы в отдельности. Показать это несложно. Спроецируем векторное уравнение = + + … + на направление элементарного перемещения :

FS = F1S + F2S + … + FnS.

Теперь, умножив это уравнение на dS, получим искомый результат:

FSdS = F1SdS + F2SdS + … + FnSdS,

то есть:

.

Элементарная работа равнодействующей нескольких сил равна сумме элементарных работ этих сил. Это утверждение справедливо и для работ на конечном участке траектории:

.

В системе СИ работа измеряется в джоулях:

1 Дж = 1 Н × 1 м.

Работа, выполняемая в единицу времени, называется мощностью:

.

Мощность — важная характеристика любого механизма. Единицей мощности является 1 Ватт. Это мощность устройства, которое ежесекундно совершает работу 1 Дж:

1 Вт = .

Теперь обратимся к теореме о кинетической энергии. Работа силы при перемещении материальной точки равна изменению кинетической энергии этой точки. Докажем это положение.

Материальная точка массы m движется под действием силы . Вычислим работу силы на участке 1-2 траектории.

. (6.3)

Здесь мы воспользовались определением вектора силыи кинематическим уравнением движения .

Будем считать, что масса частицы в процессе движения не меняется, тогда:

.

Воспользуемся этим результатом в уравнении (6.3):

. (6.4)

Теперь проделаем следующее очевидное преобразование: так как V2 = , то 2VdV = или = VdV.

Используя это равенство в уравнении (6.4), получим окончательный результат:

. (6.5)

Величина = Ек называется кинетической энергией материальной точки.

Уравнение (6.5) является математической записью теоремы о кинетической энергии: работа силы, действующей на материальную точку, равна изменению её кинетической энергии.

Важность и смысл введения понятия «работа силы» объясняется именно тем, что работа связана с изменением кинетической энергии тела:

. (6.6)

Кинетическая энергия системы тел принимается равной сумме кинетических энергий всех элементов системы.

Теорема о кинетической энергии остаётся справедливой и для случая системы тел: работа всех сил, действующих на систему материальных тел, равна изменению кинетической энергии этой системы.

Здесь важно подчеркнуть, что речь идёт о работе не только внешних сил, но и внутренних, то есть сил взаимодействия элементов системы друг с другом.

Теорема Кёнига: скорость частицы и её кинетическая энергия зависят от системы отсчёта, в которой рассматривается движение частицы.

В теореме Кёнига устанавливается правило преобразования кинетической энергии при переходе из одной системы отсчёта в другую.

Рассмотрим сначала одну частицу. Пусть её кинетическая энергия в системе отсчёта S равна Ек. Какова будет её энергия в системе отсчёта S’, движущейся со скоростью относительно S? Скорости частицы в этих двух системах связаны известным соотношением (смотри преобразования Галилея):

.

Возведём это равенство в квадрат

и домножим на

.

Таким образом, устанавливается связь кинетических энергий частицы в разных системах отсчёта:

. (6.7)

Обобщим этот результат на произвольную систему n материальных точек.

Для каждой частицы системы можно записать уравнение (6.7). Теперь сложим все эти уравнения:

. (6.8)

Здесь: = К — кинетическая энергия системы материальных точек в системе отсчёта S.

= — кинетическая энергия той же системы в системе отсчёта S’.

= = , где М = — масса системы.

= = = ,

где — скорость центра масс системы материальных точек в системе отсчёта S’.

Таким образом, уравнению (6.8) можно придать такой вид:

К=+ + . (6.9)

Если движущуюся систему отсчёта S’ связать с центром масс, то в такой системе = 0. Формула теоремы Кёнига в этом случае упрощается:

(6.10)

Подводя итог, сформулируем теорему Кёнига. Кинетическая энергия системы материальных точек равна сумме кинетической энергии всей системы, мысленно сосредоточенной в её центре масс и движущейся вместе с ним и кинетической энергии той же системы в её относительном движении по отношению к поступательно движущейся системе координат с началом в центре масс.

– Конец работы –

Эта тема принадлежит разделу:

Курс общей физики (лекции) Раздел I Физические основы механики

На сайте allrefs.net читайте: Москва, 2003. А В Прокопенко...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Работа и кинетическая энергия

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Москва, 2003
  Лекция 1 «Кинематика материальной точки» План лекции. 1. Введение. Физика — основа современного естествознания. 1.1. Из истории меха

Из истории механики

Скорость движения
Систему координат выберем так, чтобы одна из осей (например, х) совпала с прямолинейной траекторией движения. При таком выборе две другие координаты частицы М меняться не будут y

Ускорение
В общем случае прямолинейного движения скорость материальной точки может меняться во времени: V = V(t). Пусть в момент времени t1 скорость была V

Равномерное движение
Равномерным называется движение частицы, если её координата является линейной функцией времени x(t) = A + B t. (1.9) Здесь А и В — постоянные величины.

Равнопеременное движение
Равнопеременным называется движение материальной точки, если её координата является квадратичной функцией времени х = А +В t + С t2. (1.13) Раскрое

Сложение (вычитание) векторов
(2.1) Сложение векторов производится по правилу параллелограмма (рис. 2.

Скалярное произведение двух векторов.
По определению скалярным произведением векторов и

Векторное произведение
Результатом векторного произведения векторов и

Производная вектора
Пусть вектор меняется по известному закону со временем.

Скорость движения
Зададим криволинейное движение частицы М зависимостью её радиус-вектора от времени (рис. 2.7):

Ускорение. Нормальное и тангенциальное ускорение. Радиус кривизны траектории
Движение по криволинейной траектории всегда происходит с переменной скоростью. Пусть

Движение материальной точки по окружности
Положение частицы М, движущейся по окружности радиуса R, можно задать в любой момент времени углом поворота её радиус-вектора j = j(t) (рис. 2.14). Угол j отсчитывается от наперёд выб

Первый закон Ньютона
Существуют системы отсчёта, в которых свободные частицы движутся прямолинейно и равномерно, либо остаются в состоянии покоя. Свободными называются тела, не испытывающие действия со стороны

Второй закон Ньютона. Сила
Введя понятие «импульс тела», можно так сформулировать первый закон Ньютона: если на тело не действуют никакие другие тела, его импульс остаётся постоянным. Значит, изменение импуль

Третий закон Ньютона
Действие одного тела на другое носит характер взаимодействия, в котором возникают две силы: действия

Силы в природе
Всё многообразие сил в природе можно свести к четырём типам взаимодействий: 1) гравитационному, 2) электромагнитному, 3) ядерному сильному и 4) ядерному слабому. Два первых взаимодействия

Сухое трение
Приложим «небольшую» силу к телу, лежащему на горизонтальной поверхности. «Небольшую» — то есть, недостаточную для начала движения. Тело будет оставаться в покое, потому что кроме приложенной нами

Вязкое трение
Сила вязкого трения действует на тело, движущееся в вязкой среде (жидкой или газообразной). Она зависит от формы и размеров тела, скорости его движения, а также от физических свойств среды: в частн

Упругие силы. Закон Гука
Упругими называются силы, возникающие при упругих деформациях тел. Рассмотрим зависимость деформации металлического стержня или струны от величины внешней растягивающей силы F (рис.

Закон сохранения импульса
Импульс тела — вектор, равный произведению массы этого тела на его скорость:

Теория о движении центра масс
Рассмотрим движение системы «n» взаимодействующих частиц. Центром масс системы называется точка, радиус-вектор которой отвечает следующему условию

Движение тел переменной массы. Реактивное движение
До сих пор мы считали, что масса тел в процессе их движения не меняется. Но так обстоит дело не всегда. Рассмотрим, например, движение ракеты — классический пример тела, масса которого уме

Консервативные и неконсервативные силы
Консервативными называются силы, работа которых не зависит от формы траектории, а определяется только положением её начальной и конечной точек. К классу консервативных относятся, например,

Потенциальная энергия
Состояние механической системы характеризуют потенциальной энергией, если на систему действуют только консервативные силы. Рассмотрим два состояния системы: потенциальную энергию в одном и

Механическая энергия. Закон сохранения механической энергии
На прошлой лекции было введено понятие потенциальной энергии системы. По определению разность потенциальных энергий системы в двух состояниях равна работе, совершаемой консервативными сила

Работа неконсервативных сил
Рассмотрим систему n материальных частиц. Пусть при их взаимодействии друг с другом возникают только консервативные силы

Силы и потенциальная энергия
Эту лекцию мы начали с вычисления потенциальной энергии упруго деформированной пружины. Зная характер силы, возникающей при деформации пружины — закон Гука — мы смогли вычислить её энергию.

Момент силы и момент импульса относительно неподвижного центра и неподвижной оси
Рассмотрим движение материальной точки m под действием силы . Положение это

Уравнение моментов для материальной точки и системы материальных точек
Рассмотрим систему двух взаимодействующих частиц (рис. 8.4). На этом рисунке и

Закон сохранения момента импульса
Анализируя уравнение моментов относительно произвольного центра и неподвижной оси, мы говорили уже об условиях, при которых момент импульса системы не будет меняться во времени. Сформулиру

Модель твердого тела в механике. Поступательное и вращательное движение твердого тела
Все тела под действием приложенных сил деформируются, то есть в большей или меньшей степени меняют свою форму и размеры. Если эти деформации незначительны и не оказывают влияния на движение тела, т

Основное уравнение динамики вращательного движения вокруг неподвижной оси
При вращении твёрдого тела относительно неподвижной оси, все точки тела движутся по плоским круговым траекториям. Выделим частицу mi тела, вращающегося вокруг оси z (рис. 9

Теорема Гюйгенса-Штейнера
Момент инерции тела относительно произвольной оси (I) равен сумме момента инерции Ic относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тел

Полная система уравнений, описывающая произвольное движение твердого тела. Условия его равновесия и покоя
Как уже отмечалось, произвольное движение твердого тела может быть представлено совокупностью двух простых движений: поступательного и вращательного. Причем деление произвольного движения на состав

Энергия движущегося тела
2.1. Кинетическая энергия твёрдого тела, вращающегося вокруг неподвижной оси В твёрдом теле, вращающемся с угловой скоростью w относительно неподвижной оси z, выдел

Кинетическая энергия тела при плоском движении
Любое движение твёрдого тела может быть представлено суперпозицией двух движений — поступательного и вращательного. Представим плоское движение тела суммой поступательного со скоростью

Скатывание тел с наклонной плоскости
С тем, чтобы проиллюстрировать применение законов динамики твёрдого тела, решим задачу о скатывании цилиндра с наклонной плоскости (рис. 10.5). Сплошной цилиндр массы m и радиуса

Давление жидкости. Законы гидростатики
Твёрдые тела обладают упругостью объёма и формы. Это означает, что упругие силы сопротивления препятствуют любым изменениям объёма и формы твёрдого тела. Особенности молекулярного строения

Стационарное течение жидкости. Уравнение неразрывности
Параметры текущей жидкости — скорость, плотность, давление и другие — в общем случае являются функциями времени и положения точки в потоке. Если они не зависят от времени, то есть остаются постоянн

Основной закон динамики для идеальной жидкости. Уравнение Бернулли
При течении жидкости между её отдельными частицами возникают силы вязкого сопротивления. В газах эти силы сравнительно невелики, и ими можно пренебречь. Однако и во многих случаях течения жидкости

Уравнение Бернулли
Рассмотрим стационарное течение идеальной жидкости. Выделим в потоке трубку тока, а в ней — объём, ограниченный стенками трубки и двумя сечениями S1 и S2 (рис. 1

Истечение жидкости из сосуда
Вычислим скорость истечения жидкости через отверстие в сосуде (рис. 11.7). Выделим в толще жидкости трубку тока. При этом не важна конфигурация этой трубки, важно, что одно её сечение расположено н

Манометрический расходомер
Вычислим секундный расход жидкости, протекающей по горизонтальной трубе. Для этого вмонтируем в трубопровод расходомер в виде локального сужения трубы (рис. 11.8).

Периодические процессы. Гармонические колебания
Периодическими называются процессы, в точности повторяющиеся через равные промежутки времени: смена дня и ночи, движение поршня в цилиндре двигателя, колебание маятника часов, переменный ток и т.д.

Собственные незатухающие колебания
Классифицируя колебания, их делят, прежде всего, на собственные и вынужденные. Представить себе собственные колебания осциллятора очень просто: отведите из положения равновесия обычны

Пружинный осциллятор
Пружинный маятник — это грузик массой m, прикреплённый к пружине жесткостью k. Грузик может двигаться вдоль оси x по горизонтальной поверхности без трения (рис. 12.4). Начало отсчета

Математический маятник
Математический маятник — это идеализированная система, представляющая собой материальную точку на невесомой и нерастяжимой нити. Хорошим приближением к этой модели является маленький тяжелый шарик

Собственные колебания физического маятника
Физическим маятником можно назвать любое твердое тело, совершающее колебания под действием силы тяжести вокруг неподвижной точки или оси. Возьмём в качестве такого маятника однородный тонкий стерже

Сложение гармонических колебаний. Метод векторных диаграмм
Гармоническое колебание x = a Cos (wt + a) геометрически может быть представлено проекцией на произвольное направление x вектора

Энергия гармонического осциллятора
Собственные незатухающие колебания возникают в системе при выполнении двух условий: во-первых, при смещении из положения равновесия должна возникать возвращающая сила, пропорциональная смещению (уп

Собственные затухающие колебания
До сих пор мы рассматривали колебательные процессы в системах, где действовала одна единственная сила — упругая или квазиупругая («как упругая»). Уравнение такого движения записывается просто:

Вынужденные колебания. Резонанс. Амплитуда и фаза вынужденных колебаний
Рассмотрим колебания, которые поддерживаются в системе внешней гармонической силой F = F0Coswt. Такие колебания называются вынужденными. Обратимся вновь к п

Постулаты специальной теории относительности. Преобразования Лоренца
В релятивистской механике, также как и в классической, предполагается, что время однородно, а пространство однородно и изотропно. Фундаментом специальной теории относительности являются дв

Основное уравнение релятивистской динамики
Экспериментально установлено, что в области релятивистских скоростей становится заметной зависимость массы частицы от скорости

Закон эквивалентности массы и энергии
В соответствии с законом Эйнштейна полная энергия системы пропорциональна её релятивистской массе:

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги