Расширяется ли Вселенная?

В настоящее время основным доказательством расширения Вселенной служит инфракрасное смещение спектральных линий, формируемых атомами звезд галактик. Вопрос о влиянии направления и скорости приемника излучения на величину этого смещения остается открытым.

Итак, процесс старта фотона не влияет на его конечную скорость относительно пространства, а его длительность (477), (485) зависит от направления движения источника излучения и фотона относительно пространства.

Приведенный анализ фотонного эффекта Доплера с учетом модели фотона (рис. 20) показывает независимость любого смещения спектральных линий от направления движения и скорости приемника излучений, так как в любом случае фотон поглощается электроном приёмника в целом виде с характеристиками, которые он получил при рождении.

Величина и направление смещения (в инфракрасную или ультрафиолетовую область спектра) зависят только от направления движения источника излучений и самого излучения. Если эти направления совпадают, то должно наблюдаться только ультрафиолетовое смещение спектральных линий, а если - противоположны, то - только инфракрасное. Такая закономерность показывает, что наличие инфракрасного смещения спектральных линий недостаточно для однозначного заключения о расширении Вселенной.

Поскольку Земля движется относительно пространства, то это обязательно надо учитывать при анализе связи смещения спектральных линий с расширением Вселенной (рис. 194).

Например, если векторы скоростей Земли и звезды направлены вдоль одной линии в одну и ту же сторону, то величина смещения спектральной линии укажет на факт движения звезды относительно пространства, но не относительно Земли (рис. 194).

 

Рис. 194. Схема к анализу расширения Вселенной:

AB – радиальное направление расширения Вселенной;

D, S – звезды, расположенные на радиальном

направлении расширения Вселенной; Е - Земля

 

В этом случае, если Земля E движется вслед за звездой S со скоростью относительно пространства большей, чем скорость звезды, то эти небесные тела будут сближаться. Но из-за того, что время старта фотона со звезды в направлении к Земле увеличится (491) (по сравнению с ), то мы зафиксируем инфракрасное смещение спектральных линий (487). То есть расстояние между звездой S и Землей E уменьшается при инфракрасном смещении спектров (рис. 194).

Если же звезда D движется вслед за Землей E со скоростью большей, чем Земля, то и в этом случае небесные тела также будут сближаться, но время старта (477) фотона со звезды D в направлении к Земле будет меньше, чем при и мы зафиксируем ультрафиолетовое смещение (490). Таким образом, в обоих рассмотренных случаях звезда и Земля сближались, а смещения спектральных линий были противоположны.

Да и вообще, разве может влиять движение звезды относительно Земли на смещение спектральных линий? Нет, конечно. Этим процессом управляет скорость звезды не относительно каких-то там планет или галактик, а относительно единого для всех звезд, планет и галактик - относительно пространства.

Важным результатом анализа спектров источника SS433 является тот факт, что ультрафиолетовое смещение спектральных линий в 20 и более раз слабее инфракрасного при равных скоростях движения. Видимо, поэтому астрофизики фиксируют в основном инфракрасное смещение спектральных линий у большинства звезд и на основании этого делают вывод о расширении Вселенной. Однако наличие ультрафиолетового смещения спектров атомов у некоторых звезд указывает на то, что инфракрасное смещение спектральных линий - недостаточное условие для однозначного вывода о расширении Вселенной. Этот вывод будет однозначным только при одновременном учёте и инфракрасного, и ультрафиолетового смещений спектров атомов.

Чтобы сделать однозначный вывод о расширении Вселенной, необходимо зафиксировать смещение спектров с противоположных направлений поверхности Земли (рис. 194).

Если в обоих направлениях будет зафиксировано инфракрасное смещение (например, от источников S и D, рис. 194), то процесс расширения Вселенной можно признать заслуживающим внимания. Если же такая закономерность не подтвердится, то вывод о расширении Вселенной нельзя признать однозначным.

Конечно, у нас нет достаточных данных для однозначного отождествления красного смещения с расширением Вселенной, так как фотон может терять массу и увеличивать длину своей волны по нескольким причинам. Например, в результате взаимодействия с молекулами водорода в космосе. Обусловлено это тем, что размер светового фотона, примерно, на 2 порядка (100 раз) больше размера молекулы, поэтому он не отражается от неё, а пропускает её через себя, теряя при этом часть своей магнитной субстанции, которая, теряя плотность, превращается в эфир. Длина волны фотона, потерявшего часть своей массы, увеличивается, поэтому спектральная линия, формируемая такими фотонами, смещается в инфракрасную область.