рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Методом сечения Полученное выражение можно обобщить

Методом сечения Полученное выражение можно обобщить - Лекция, раздел Механика, Теоретическая механика Поперечная Сила В Рассматриваемом Сечении Равна Алгебраической Сумме Всех Сил...

Поперечная сила в рассматриваемом сечении равна алгебраической сумме всех сил, действующих на балку до рассматриваемого сечения:

Q = ΣFi

Поскольку речь идет об алгебраической сумме, в которой необходимо учитывать знак действующих сил, необходимо сформулировать правило знаков при определении значений поперечной силы в сечении; внешние силы активные и реактивные, лежащие по левую сторону от сечения, считаются положительными, если они направлены вверх, отрицательными — вниз, а по правую сторону — наоборот (рис. 104).

Рис. 104. Правила знаков поперечной силы Q

Перейдем к рассмотрению второго уравнения равновесия. Определим сумму моментов относительно рассматриваемого сечения I

(ΣМ)I =MI + F1l1 - F2l2 = 0

откуда

MI = - F1l1 + F2l2

Это выражение также обобщим. Изгибающий момент в рассматриваемом сечении равен алгебраической сумме моментов относительно этого сечения всех внешних сил и моментов, действующих на балку до рассматриваемого сечения:

М = Σ Mi

Сформулируем правило знаков при определении зна-чения изгибающего момента: момент, изгибающий балку выпуклостью вниз, считается положительным, а вверх — отрицательным (рис. 105). Для лучшего запоминания Рис 105. Правило знаков изгибающего

правила знаков изгибающего момента М

момента следует отметить, что его значение откладывается в сторону сжатого волокна (см. рис. 105): при изгибе выпуклостью вниз сжатое волокно наверху балки, т. е. в плюс, а при изгибе выпуклостью вверх, сжатое волокно внизу — момент откладывается вниз — минус.

Напомним, что существует три вида опор балок:

1) шарнирно-подвижная опора (рис. 106);

2) шарнирно-неподвижная опора (рис. 107);

3) жесткая заделка или защемление (рис. 108).

В опорах возникают силовые факторы, называемые реакциями опор. Два первых вида шарнирных опор допускают свободное проворачивание балки, и поэтому в них не возникает опорных моментов. Только жесткая заделка, не допускающая поворота балки в опоре, создает реактивный опорный момент.

Рис. 106. Шарнирно - Рис. 107. Шарнирно - Рис. 108. Жесткая заделка

подвижная опора неподвижная опора или защемление

Подвижная шарнирная опора допускает свободное осевое перемещение балки на катках, поэтому в ней возникает только одна опорная реакция.

В неподвижной шарнирной опоре возникает реакция под углом α к горизонтальной оси, эта реакция может быть разложена на две реакции в горизонтальном и вертикаль-

Рис. 109. Консольная балка под Рис. 110. Расчетная схема кон-
нагрузкой сольной балки

ном направлениях. Угол α определяет отношение величин горизонтальной и вертикальной составляющих реакций опор:

Жесткая заделка, или защемление, дает три реакции: Rx, Ry , M.

Рассмотрим, например, балку, нагруженную силой F, защемленную с одной стороны, и свободную с другой (рис. 109). Такую балку называют консольной. Ось у направим вертикально, а ось х — горизонтально.

Действующую под углом α силу F разложим по осям х и у на F cos α и F sin а (см. рис. 109). В защемлении возникают три неизвестные реакции: две силы R„ и RK и момент М. Приложим к балке неизвестные опорные реакции и получим расчетную схему (рис. 110). Балка находится в равновесии, и поэтому должны быть справедливы три уравнения равновесия

ΣМ = 0, ΣFy = 0 , ΣFx = 0 .

Подставим в эти уравнения силы и моменты, действующие на консоль:

ΣFy = Ry — F sin α = 0 ,

ΣFx = Rx – F cosα = 0

ΣМ = М — Fl sin α = 0.

Момент взят относительно точки А для простоты, чтобы исключить моменты от неизвестных опорных реакций Rx и Ry . Определим

Рис. 111. Действие силы на двухопорную балку

 

Ry= F sin α ; Rx = F cos α ; М = F l sin α.

Из рассмотрения этого примера следует, что если действующие силы будут перпендикулярны оси балки, т. е. угол α = 90°, то горизонтальных составляющих опорных реакций не будет: cos α = 0 , Rx = 0.

Теперь можно перейти к рассмотрению способов построения графиков изменения внутренних силовых факторов при изгибе Q и М по длине балки или эпюр Q и М.

Предварительно рассмотрим несколько простейших примеров. Некоторые из них приведены в приложении III.

Пример 1. Построить эпюры Q и М при изгибе балки на двух опорах или двухопорной балки под действием сосредоточенной силы F (рис. 111).

Решение. Определим опорные реакции Ra и Rb из уравнений равновесия балки

ΣМА = F a — RB (а + b) = 0,

ΣF = RA — F + RB = 0

Из первого уравнения найдем RB

а из второго уравнения определим RA

Разобьем балку на два участка и запишем выражение поперечных сил и изгибающих моментов для каждого из участков с учетом выве­денных выше соотношений и принятых правил знаков:

для участка I на рас­стоянии х1 от опоры А

Где 0 ≤ x1 ≤ a

При x1 = 0 М (0) = 0,

При х1 = а

Рис. 112. Действие изгибающего

момента на двухопорную балку

для участка II на расстоянии х2 от опоры А

Где 0 ≤ x1 ≤ a + b

при x2 = a

при x2 = a + b M(a + b) = 0

 

Таким образом, на каждом участке балки Q постоянно, причем для участка

I — положительно, а для II — отрицательно, а момент имеет линейную зависимость от х и на участке I возрастает от 0 до, а на участке II убывает от этой величины до нуля. С учетом этого по­строим эпюры Q и М (см. рис. 111). Следует отметить, что там, где действует сила, на эпюре поперечных сил наблюдается скачок, равный по величине действующей силе. Так, на эпюре Q имеется три скачка там, где действуют силы Ra , F и Rb .

Если сила имеет знак плюс, скачок наблюдается вверх, если ми­нус — вниз, в случае действия силы F.

 

Определим связь ме­жду нормальным напря­жением при изгибе балки σ и изгибающим момен­том М. Рассмотрим усло­вия чистого изгиба балки (рис. 114), когда Q = 0 и в сечении действует
только изгибающий момент. Опыт показывает, что соотно-шение для σ при чистом изгибе можно использовать для опреде-ления нормальных напряжений при поперечном изгибе.

Рассмотрим положение двух плоскостей I , II , лежа­щих друг от друга на малом расстоянии dx (см. рис. 114). При изгибе так же, как и при растяжении и кручении,

Рис 114. Деформация бруса при справедлива гипотеза плоских

чистом изгибе сечений. Сечения I и II, плоские до изгиба, остались плоскими и после изгиба (I' и II'). Только при этом повернулись на некоторый малый угол dφ, оставаясь перпендикулярными к наружным

поверхностям балки. При этом верхние волокна балки растянулись, их длина а'b' стала больше прежней ab, а нижние волокна балки тп сжались и приняли положе­ние т'п'.

Логично предположить, что между верхними и ниж­ними волокнами имеется линия раздела 1—2, называе­мая нейтральным слоем, который при изгибе не будет менять своей длины. При чистом изгибе он примет форму дуги окружности радиуса р. Рассмотрим деформацию произвольного волокна cd балки на расстоянии у от ней­трального слоя 1—2 (рис. 115). Проведем из точки 2 прямую 2е, параллельную 1с, тогда ed будет равна удлинению волок­на cd. Ввиду малости угла определим дуги ed и 1 2: ed = y dφ ; 12 ρ dφ , откуда следует

если учесть, что dx — длина волокна cd до деформа­ции (см. рис. 114), то станет ясно, что ed /dx является де­формацией волокна cd:

Полученная зависимость показывает что деформация волокна прямо пропорциональна её расстоя-нию y от нейтрального слоя. Максимальные деформации балка испытывает в

точках поперечного сечения

Рис. 115 Деформация волокон бруса при

изгибе

максимально удаленных от нейтрального слоя. Для определения напряжений воспользуемся законом Гука

σ = Е ε

откуда следует после подстановки соотношение

Нормальное напряжение в поперечном сечении при изгибе балки прямо пропорционально расстоянию от ней­тральной оси балки. Пользуясь этой зависимостью, можно построить эпюру распределения нормальных напряжений по сечению балки (рис. 116). В нейтральном слое не возникает ни нормальных напряжений, ни деформаций. Линия пересечения нейтрального слоя с поперечным сечением балки называется нейтральной осью.

Определим положение нейтральной оси. Для этого вспомним, что в поперечном сечении сумма всех сил на ось х равна нулю, так как при изгибе балки продольных сил нет.

Рис. 116. Эпюра нормальных напряжений при изгибе

Продольная элементарная сила, действующая на эле­ментарную площадку dS,

Просуммировав по всей площади, получим

С учетом того, что постоянная величина , следует равенство

Ранее при рассмотрении геометрических характери­стик сечений было показано, что это равенство не что иное, как равенство нулю статического момента пло­щади сечения относительно оси z : S = 0, что свидетель­ствует о том, что нейтральная ось проходит через центр тяжести сечения 0 (см. рис. 116).

Для количественного определения напряжений необ­ходимо найти радиус кривизны нейтрального слоя де­формированной балки r. Запишем очевидное равенство действующего в сечении изгибающего момента М моменту от нормальных сил. Элементарная нормальная сила на расстоянии у от нейтральной оси, действующая на эле­ментарную площадку dS,

dN = s dS,

а элементарный момент относительно нейтральной оси

dM = s y dS.

Суммируя элементарные моменты по площади сечения и подставляя выражение , найдем

Отсюда определим кривизну изогнутой оси бруса

Где — момент инерции поперечного сечения относительно оси z.

Подставим выражение кривизны в формулу для s и окончательно после элементарных преобразований по­лучим

Поскольку нас больше всего интересует максимальное напряжение, то из эпюры изгибающих моментов необхо­димо найти максимальный изгибающий момент Mmax и для поперечного сечения, соответствующего Мmах, найти максимальные нормальные напряжения по формуле

Где — момент сопротивления изгибу.

Формулы для определения момента сопротивления основных сечений изгибу приведены в табл. Эти формулы встречаются в расчетной прак­тике. Числовые значения моментов сопротивления для стандартных профилей проката указаны в соответствую­щих ГОСТах на прокат.

Момент сопротивления изгибу измеряется в м3. Если материал балки пластичный, например, сталь, то условие прочности определяется по максимальному напряжению

В случае хрупкого материала (чугун) требуется про­верка прочности по напряжениям, как растяжения, так и сжатия:

С учетом условий прочности решаются три основные задачи:

1) задача проверки прочности — по заданным нагруз­кам и геометрическим размерам поперечного сечения оп­ределяют максимальное напряжение в сечении, называе­мом опасным

и оно сопоставляется c допускаемым [s ] ;

2) проектная задача, когда по заданным нагрузкам и допускаемым напряжени-ям определяют поперечное се­чение балки, исходя из момента сопротивления изгибу:

 

 

3) задача определения допускаемой нагрузки

[ М] = W [s ],

где [М] — допускаемая нагрузка, определяемая по опас­ному сечению балки.

 

 

Рис. 117.Эпюра изгибающих моментов М и перерезывающих сил

 

Таблица 1. Формулы для определения момента сопротивления изгибу

основных сечений

  Сечение Формула момента сопротивления изгибу W
   
     
   

 

 

ЛЕКЦИЯ 31

Тема 2.6. Понятие о касательных напряжениях

при изгибе. Линейные и угловые перемещения

при изгибе, их определение

Иметь представление о касательных напряжениях при изги­бе, об упругой линии балки, о деформациях при изгибе и методах определения линейных и угловых перемещений.

Знать один из методов определения линейных и угловых пере­мещений.

– Конец работы –

Эта тема принадлежит разделу:

Теоретическая механика

Теоретическая механика... ЛЕКЦИЯ... Тема Основные понятия и аксиомы статики...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Методом сечения Полученное выражение можно обобщить

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Задачи теоретической механики
Теоретическая механика — наука о механическом движении материальных твердых тел и их взаимодействии. Механическое дви­жение понимается как перемещение тела в пространстве и во време­ни по от

Третья аксиома
Не нарушая механического состояния тела, можно добавить или убрать уравновешенную систему сил (принцип отбрасывания систе­мы сил, эквивалентной нулю) (рис. 1.3). Р,=Р2 Р,=Р.

Следствие из второй и третьей аксиом
Силу, действующую на твер­дое тело, можно перемещать вдоль линии ее действия (рис. 1.6).

Связи и реакции связей
Все законы и теоремы статики справедливы для свободного твердого тела. Все тела делятся на свободные и связанные. Свободные тела — тела, перемещение которых не ограничено.

Жесткий стержень
На схемах стержни изображают толсто сплошной линией (рис. 1.9). Стержень може

Неподвижный шарнир
Точка крепления пере­мещаться не может. Стер­жень может свободно повора­чиваться вокруг оси шарни­ра. Реакция такой опоры про­ходит через ось шарнира, но

Плоская система сходящихся сил
Система сил, линии действия которых пе­ресекаются в одной точке, называется сходя­щейся (рис. 2.1).

Равнодействующая сходящихся сил
Равнодействующую двух пересекающихся сил можно опреде­лить с помощью параллелограмма или треугольника сил (4-я ак­сиома) (вис. 2.2).

Условие равновесия плоской системы сходящихся сил
При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого. Если

Решение задач на равновесие геометрическим способом
Геометрическим способом удобно пользоваться, если в системе три силы. При решении задач на равновесие тело считать абсолютно твердым (отвердевшим). Порядок решения задач:

Решение
1. Усилия, возникающие в стержнях крепления, по величине равны силам, с которыми стержни поддерживают груз (5-я аксиома статики) (рис. 2.5а). Определяем возможные направления реакций связе

Проекция силы на ось
  Проекция силы на ось определяется отрезком оси, отсекаемым перпендикулярами, опущенными на ось из начала и конца вектора (рис. 3.1).  

Сил аналитическим способом
Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определяем равнодействующую геоме­трическим способом. Выберем систему координат, определим про­екции всех зада

Сходящихся сил в аналитической форме
  Исходя из того, что равнодействующая равна нулю, получим: Усл

Пара сил, момент пары сил
Парой сил называется система двух сил, равных по модулю, параллельных и направлен­ных в разные стороны. Рассмотрим систему сил (Р; Б"), образую­щих пару.

Момент силы относительно точки.
  Сила, не проходящая через точку крепления тела, вызывает вра­щение тела относительно точки, поэтому действие такой силы на тело оценивается моментом. Момент силы отн

Теорема Пуансо о параллельном переносе сил
Силу можно перенести параллельно линии ее действия, при этом нужно добавить пару сил с моментом, равным произведению модуля силы на расстояние, на которое перенесена сила.

Расположенных сил
Линии действия произвольной системы сил не пересекаются в одной точке, поэтому для оценки состояния тела такую систему следует упростить. Для этого все силы системы переносят в одну произ­вольно вы

Влияние точки приведения
Точка приведения выбрана произвольно. При изменении поло­жения точки приведения величина главного вектора не изменится. Величина главного момента при переносе точки приведения из­менится,

Плоской системы сил
1. При равновесии главный вектор системы равен нулю . Аналитическое определение главного вектора приводит к выводу:

Виды нагрузок
По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной

Момент силы относительно оси
Момент силы относительно оси равен моменту проекции силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью (рис. 7.1 а).   MOO

Вектор в пространстве
В пространстве вектор силы проецируется на три взаимно пер­пендикулярные оси координат. Проекции вектора образуют ребра прямоугольного параллелепипеда, век­тор силы совпадает с диагональю (рис. 7.2

Пространственная сходящаяся система сил
Пространственная сходящаяся система сил — система сил, не лежащих в одной плоскости, линии действия которых пересе­каются в одной точке. Равнодействующую пространственной системы си

Приведение произвольной пространственной системы сил к центру О
Дана пространственная система сил (рис. 7.5а). Приведем ее к центру О. Силы необходимо параллельно перемещать, при этом образует­ся система пар сил. Момент каждой из этих пар равен

Центр тяжести однородных плоских тел
(плоских фигур) Очень часто приходится определять центр тяжести различных плоских тел и геометрических плоских фигур сложной формы. Для плоских тел можно записать: V =

Определение координат центра тяжести плоских фигур
Примечание. Центр тяжести симметричной фигуры находится на оси симметрии. Центр тяжести стержня находится на середине высоты. Поло­жения центров тяжести простых геометрических фигур могут

Кинематика точки
Иметь представление о пространстве, времени, траектории, пути, скорости и ускорении .Знать способы задания движения точки (естественный и координатный). Знать обозначения, едини

Пройденный путь
Путь измеряется вдоль траектории в направлении движения. Обозначение — S, единицы измерения — метры. Уравнение движения точки : Уравнение, определяющ

Скорость движения
Векторная величина, характеризующая в данный момент бы­строту и направление движения по траектории, называется скоро­стью. Скорость — вектор, в любой момент направленный по к

Ускорение точки
Векторная величина, характеризующая быстроту изменения скорости по величине и направлению, называется ускорением точки. Скорость точки при перемещении из точки М1

Равномерное движение
Равномерное движение — это движение с постоянной скоро­стью: v = const. Для прямолинейного равномерного движения (рис. 10.1 а)

Равнопеременное движение
  Равнопеременное движение — это движение с постоянным ка­сательным ускорением: at = const. Для прямолинейного равнопеременного движения

Поступательное движение
Поступательным называют такое движение твердого тела, при котором всякая прямая линия на теле при движении остается парал­лельной своему начальному положению (рис. 11.1, 11.2). При

Вращательное движение
При вращательном движении все точки тела описывают окруж­ности вокруг общей неподвижной оси. Неподвижная ось, вокруг которой вращаются все точки тела, называется осью вращения.

Частные случаи вращательного движения
Равномерное вращение (угловая скорость постоянна): ω =const Уравнение (закон) равномерного вращения в данном случае име­ет вид:

Скорости и ускорения точек вращающегося тела
  Тело вращается вокруг точки О. Определим параметры дви­жения точки A , расположенной на расстоянии RA от оси вращения (рис. 11.6, 11.7). Путь

Решение
1. Участок 1 — неравномерное ускоренное движение, ω = φ’ ; ε = ω’ 2. Участок 2 — скорость постоянна — движение равномерное, . ω = const 3.

Основные определения
Сложным движением считают движение, которое можно разло­жить на несколько простых. Простыми движениями считают посту­пательное и вращательное. Для рассмотрения сложного движения точ

Плоскопараллельное движение твердого тела
Плоскопараллельным, или плоским, называется такое движение твердого тела, при котором все точки тела перемещаются парал­лельно некоторой неподвижной в рассматриваемой системе отсчета

Поступа­тельное и вращательное
Плоскопараллельное движение раскладывают на два движения: поступательное вместе с некоторым полюсом и вращательное от­носительно этого полюса. Разложение используют для опред

Центра скоростей
Скорость любой точки тела можно определять с помощью мгновенного центра скоростей. При этом сложное движение пред­ставляют в виде цепи вращений вокруг разных центров. Задача

Аксиомы динамики
Законы динамики обобщают результаты многочисленных опытов и наблюдений. Законы динамики, которые принято рассматривать как аксиомы, были сформулированы Ньютоном, но первый и четвертый законы были и

Понятие о трении. Виды трения
Трение — сопротивление, возникающее при движении одного шероховатого тела по поверхности другого. При скольжении тел воз­никает трение скольжения, при качении — трение качения. Природа сопро

Трение качения
Сопротивление при качении связано с взаимной деформацией грунта и колеса и значительно меньше трения скольжения. Обычно считают грунт мягче колеса, тогда в основном дефор­мируется грунт, и

Свободная и несвободная точки
Материальная точка, движение которой в пространстве не огра­ничено какими-нибудь связями, называется свободной. Задачи реша­ются с помощью основного закона динамики. Материальные то

Сила инерции
Инертность — способность сохранять свое состояние неизмен­ным, это внутреннее свойство всех материальных тел. Сила инерции — сила, возникающая при разгоне или торможе­нии тел

Решение
Активные силы: движущая сила, сила трения, сила тяжести. Ре­акция в опоре R. Прикладываем силу инерции в обратную от ускоре­ния сторону. По принципу Даламбера, система сил, действующих на платформу

Работа равнодействующей силы
Под действием системы сил точка массой т перемещается из положения М1 в положение M 2 (рис. 15.7). В случае движения под действием системы сил пользуютс

Мощность
Для характеристики работоспособности и быстроты соверше­ния работы введено понятие мощности. Мощность — работа, выполненная в единицу времени:

Мощность при вращении
Рис. 16.2 Тело движется по дуге радиуса из точки М1 в точку М2 М1М2 = φr Работа силы

Коэффициент полезного действия
Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений. Таким образом, машина (механизм) кроме полезной работы совершает еще и дополнитель

Теорема об изменении количества движения
Количеством движения материальной точки называется векторная величина, равная произведению массы точки на ее скорость mv. Вектор количества движения совпадает по

Теорема об изменении кинетической энергии
Энергией называется способность тела совершать механиче­скую работу. Существуют две формы механической энергии: потенциальная энергия, или энергия положения, и кинетическая энергия,

Основы динамики системы материальных точек
Совокупность материальных точек, связанных между собой силами взаимодействия, называется механической системой. Любое материальное тело в механике рассматривается как механическая

Основное уравнение динамики вращающегося тела
Пусть твердое тело под действием внешних сил вращается во­круг оси Оz с угловой скоростью

Напряжения
Метод сечений позволяет определить величину внутреннего си­лового фактора в сечении, но не дает возможности установить за­кон распределения внутренних сил по сечению. Для оценки прочно­сти н

Внутренние силовые факторы, напряжения. Построение эпюр
Иметь представление о продольных силах, о нормальных на­пряжениях в поперечных сечениях. Знать правила построения эпюр продольных сил и нормальных напряжений, закон распределения

Продольных сил
Рассмотрим брус, нагруженный внешними силами вдоль оси. Брус закреплен в стене (закрепление «заделка») (рис. 20.2а). Делим брус на участки нагружения. Участком нагружения с

Геометрические характеристики плоских сечений
Иметь представление о физическом смысле и порядке опре­деления осевых, центробежных и полярных моментов инерции, о главных центральных осях и главных центральных моментах инерции.

Статический момент площади сечения
Рассмотрим произвольное сечение (рис. 25.1). Если разбить сечение на бесконечно малые площадки dA и умножить каждую площадку на расстояние до оси координат и проинтегрировать получе

Центробежный момент инерции
Центробежным моментом инерции сечения называется взятая ковсей площади сумма произведений элементарных площадок на обе координаты:

Осевые моменты инерции
Осевым моментом инерции сечения относительно некоторой реи, лежащей в этой же плоскости, называется взятая по всей пло­щади сумма произведений элементарных площадок на квадрат их расстояния

Полярный момент инерции сечения
Полярным моментом инерции сечения относительно некоторой точки (полюса) называется взятая по всей площади сумма произве­дений элементарных площадок на квадрат их расстояния до этой точки:

Моменты инерции простейших сечений
Осевые моменты инерции прямоугольника (рис. 25.2) Представим прямо

Полярный момент инерции круга
Для круга вначале вычисляют поляр­ный момент инерции, затем — осевые. Представим круг в виде совокупности бесконечно тонких колец (рис. 25.3).

Деформации при кручении
Кручение круглого бруса происходит при нагружении его па­рами сил с моментами в плоскостях, перпендикулярных продольной оси. При этом образующие бруса искривляются и разворачиваются на угол γ,

Гипотезы при кручении
1. Выполняется гипотеза плоских сечений: поперечное сечение бруса, плоское и перпен- дикулярное продольной оси, после деформацииостается плоским и перпендикулярным продольной оси.

Внутренние силовые факторы при кручении
Кручением называется нагружение, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор — крутящий момент. Внешними нагрузками также являются две про

Эпюры крутящих моментов
Крутящие моменты могут меняться вдоль оси бруса. После определения величин моментов по сечениям строим график-эпюру крутящих моментов вдоль оси бруса.

Напряжения при кручении
Проводим на поверхности бру­са сетку из продольных и попе­речных линий и рассмотрим рису­нок, образовавшийся на поверхно­сти после Рис. 27.1а деформации (рис. 27.1а). Поп

Максимальные напряжения при кручении
Из формулы для определения напряжений и эпюры распределе­ния касательных напряжений при кручении видно, что максималь­ные напряжения возникают на поверхности. Определим максимальное напряж

Виды расчетов на прочность
Существует два вида расчета на прочность 1. Проектировочный расчет — определяется диаметр бруса (вала) в опасном сечении:

Расчет на жесткость
При расчете на жесткость определяется деформация и сравни­вается с допускаемой. Рассмотрим деформацию круглого бруса над действием внешней пары сил с моментом т (рис. 27.4).

Основные определения
Изгибом называется такой вид нагружения, при котором в по­перечном сечении бруса возникает внутренний силовой фактор —изгибающий момент. Брус , работающий на

Внутренние силовые факторы при изгибе
Пример 1.Рассмотрим балку, на которую действует пара сил с моментом т и внешняя сила F (рис. 29.3а). Для определения вну­тренних силовых факторов пользуемся методом с

Изгибающих моментов
Поперечная сила в сече­нии считается положитель­ной, если она стремится раз­вернуть се

Дифференциальные зависимости при прямом поперечном изгибе
Построение эпюр поперечных сил и изгибающих моментов су­щественно упрощается при использовании дифференциальных зави­симостей между изгибающим моментом, поперечной силой и интен­сивностью равномерн

Напряжения
Рассмотрим изгиб балки, защемленной справа и нагруженной сосредоточенной силой F (рис. 33.1).

Напряженное состояние в точке
Напряженное состояние в точке характеризуется нормальны­ми и касательными напряжениями, возникающими на всех площад­ках (сечениях), проходящих через данную точку. Обычно достаточ­но определить напр

Понятие о сложном деформированном состоянии
Совокупность деформаций, возникающих по различным напра­влениям и в различных плоскостях, проходящих через точку, опре­деляют деформированное состояние в этой точке. Сложное деформи

Расчет круглого бруса на изгиб с кручением
В случае расчета круглого бруса при действии изгиба и кру­чения (рис. 34.3) необходимо учитывать нормальные и касательные напряжения, т. к. максимальные значения напряжений в обоих слу­чаях возника

Понятие об устойчивом и неустойчивом равновесии
Относительно короткие и массивные стержни рассчитывают на сжатие, т.к. они выходят из строя в результате разрушения или остаточных деформаций. Длинные стержни небольшого поперечного сечения под дей

Расчет на устойчивость
Расчет на устойчивость заключается в определении допускае­мой сжимающей силы и в сравнении с ней силы действующей:

Расчет по формуле Эйлера
Задачу определения критической силы математиче­ски решил Л. Эйлер в 1744 г. Для шарнирно закрепленного с обеих сторон стержня (рис. 36.2) формула Эйлера имеет вид

Критические напряжения.
Критическое напряжение — напряжение сжатия, соответству­ющее критической силе. Напряжение от сжимающей силы определяется по формуле

Пределы применимости формулы Эйлера
Формула Эйлера выполняется только в пределах упругих де­формаций. Таким образом, критическое напряжение должно быть меньше предела упругости материала. Пред

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги