рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Уравнение гармонических колебаний. Маятники

Уравнение гармонических колебаний. Маятники - раздел Механика, МЕХАНИКА На Колеблющуюся Материальную Точку Массой M Действует Возвращающая Сил...

На колеблющуюся материальную точку массой m действует возвращающая сила F = - kx. Эта сила вызывает ускорение . Равенство этих сил позволяет записать

ma = -kx (5.17)

где, k – жесткость системы,; х – смещение; а – ускорение материальной точки.

Сделав соответствующие подстановки в (5.17), получим

или (5.18)

Уравнение (5.18) представляет собой дифференциальное уравнение второго порядка незатухающих гармонических колебаний материальной точки.

Решением этого дифференциального уравнения как раз и является уравнение (5.2): .

Колебания любого гармонического осциллятора (или гармонического вибратора) описываются дифференциальным уравнением второго порядка

(5.19)

Решением этого уравнения является

(5.20)

где S0 – амплитудное (максимальное) значение параметра S.

Примерами гармонических осцилляторов являются маятники, колебательный контур.

В качестве примера малых колебаний рассмотрим колебания маятников.

– Конец работы –

Эта тема принадлежит разделу:

МЕХАНИКА

МЕХАНИКА... МОЛЕКУЛЯРНАЯ ФИЗИКА И... МЕХАНИКА...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Уравнение гармонических колебаний. Маятники

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

И ТЕРМОДИНАМИКА
  Курс лекций по физике для студентов инженерно-технических специальностей         &n

Механика. Система отчета
Механика – раздел физики, изучающий закономерности механического движения и причины, вызывающие и изменяющие это движение. Механическое движение, заключается в изменении с течением

Перемещение и путь
Для изучения закономерностей физических процессов используют физические модели. Физической моделью, используемой для изучения законов механического движения является материальная точ

Скорость и ускорение
Рассмотрим движение материальной точки из положения А в положение В вдоль произвольной траектории

Движение материальной точки по окружности
Если материальная точка движется по окружности, то ее движение иногда удобнее oписывать не линейными величинами S,

Первый закон Ньютона. Инерциальная система отсчета
Как уже отмечалось выше, динамика, как раздел классической механики, изучает движение тел в зависимости от приложенных к ним сил. В основе динамики лежат три закона Ньютона. В качестве I з

Масса. Импульс. Закон сохранения импульса
Движущаяся материальная точка характеризуется импульсом (количеством движения). Вектор импульса материальной точки сонаправлен вектору скорости, а величина импульса пропорциональна величине скорост

Сила. Второй и третий законы Ньютона
При взаимодействии материальной точки с внешними телами ее импульс со временем изменяется. За меру изменения импульса принимается величина

Сила трения
При движении тела по горизонтальной поверхности на него действует сила, препятствующая движению – сила трения, то есть сила сопротивления, направленная в сторону противоположную перемещению.

Сила упругости
Как уже было отмечено выше, сила вызывает либо ускорение, либо деформацию тела. Деформация – это всякое изменение размеров или формы тела под действием внешних сил. Если после прекращения де

Сила тяготения
Ньютон, изучая движения планет на основании законов Кеплера[4] и законов динамики, установил закон всемирного тяготения. Этот закон сначала был сформулирован для планет, которые рассматривались как

Из формулы (2.27) видно, что
(2.29) Если тело находится на высоте h (r=R+h) то

Основное уравнение вращательного движения. Момент инерции
Рассмотрим абсолютно твердое тело, вращающееся вокруг неподвижной оси ОО (рис.3.3). Разобьём мысленно это тело на элементы массами Δm1, Δm2

Кинетическая энергия вращения
Рассмотрим вращение абсолютно твердого тела вокруг неподвижной оси ОО с угловой скоростью ω (рис. 3.7). Разобьем твердое тело на n элементарных масс ∆mi

Аналогия между поступательным и вращательным движением
Если сопоставить соотношения между величинами, характеризующими поступательное движение, с такими же соотношениями для вращательного движения вокруг оси, увидим аналогию между ними. Достаточно запо

Работа переменной силы. Мощность.
Если под действием силы F происходит движение и тело перемещается на величину S, то говорят, что сила совершает работу. Работа – скалярная физическая величина, равная произведению про

Энергия. Кинетическая и потенциальная энергии
Тот факт, что тела могут совершать работу над другими телами, означает, что данные тела обладают энергией. Физическая величина, характеризующая способность тела или системы тел совершать работу наз

Закон сохранения энергии в механике
Полная механическая энергия Е тела равна сумме кинетической Ек и потенциальной Еn энергий: Е = Ек + Еn (4.20)

Основные характеристики колебательного движения
Процессы точно или приблизительно повторяющиеся через одинаковые промежутки времени называются колебаниями.В зависимости от физической природы различают механические, электр

Кинетическая, потенциальная и полная энергии гармонических колебаний
Полная энергия Е колеблющейся материальной точки равна сумме кинетической Ек и потенциальной Еп энергий Е = Ек + Еп

Физический маятник
Физическим маятником называется твердое тело, которое может колебаться под действием силы тяжести вокруг оси, не проходящей через центр масс. При отклонении маятника относительно оси О

Математический маятник
Математическим маятником называется идеализированная система, состоящая из материальной точки массой m, подвешенной на нерастяжимой невесомой нити, которая колеблется под действием си

Сложение гармонических колебаний одного направления
Если точка одновременно участвует в двух или нескольких колебаниях, то происходит сложение этих колебаний. Рассмотрим два случая: сложение гармонических колебаний, направленных по одной пр

Сложение взаимно перпендикулярных колебаний
Изучим результирующее колебание при сложении двух колебаний с одинаковыми циклическими частотами ω, происходящих во взаимно перпендикулярных направлениях вдоль осей Х и Y.

Возникновение волны. Продольные и поперечные волны
  Если в среде колеблется частица, то она приводит в колебание соседние частицы. Процесс распространения колебаний называется волной. Направление распространения коле

Уравнение бегущей волны. Волновое уравнение
Уравнение бегущей волны выражает зависимость смещения колеблющейся частицы от координаты и времени. Рассмотрим вывод уравнения плоской синусоидальной волны. Пусть упругая волна распростран

Фазовая и групповая скорости
Скорость распространения фазы колебания называется фазовой скоростью. Если в линейной среде распространяются несколько волн, то к ним применим принцип суперпозиции (наложения) волн. Каждая в

Волны в упругих средах
Фазовая скорость распространения механических волн зависит от макроскопических свойств среды, таких, как плотность и упругость.   Рассмотрим распространение механической

Звук и его характеристики
Распространяющиеся в среде упругие волны с частотами в пределах 16 – 20000 Гц называются звуковыми волнами. Волны указанного диапазона, воздействуя на слуховой аппарат, вызывают ощущение зву

Принцип относительности Галилея
Рассмотрим инерциальные системы координат К (х,у,z) и К’ (х’,у’,z’) . Пусть система К’ движется относительно системы К с постоянной скоростью υ0

Постулаты специальной теории относительности.
Относительность времени Специальная теория относительности (СТО) представляет собой современную теорию пространства и времени. СТО иначе называется релятивис

Молекулярно-кинетический и термодинамический методы
При изучении строения веществ и их свойств используют два метода: – молекулярно-кинетический (молекулярно-статистический); – термодинамический. Молекулярно-кинети

Термодинамические параметры
  При изучение свойств вещества термодинамическим методом используют понятие термодинамической системы, под которой понимается совокупность макроскопических тел (или составляющих тело

Основное уравнение молекулярно-кинетической теории газа
Основное уравнение молекулярно-кинетической теории устанавливает связь между давлением, объемом и кинетической энергией поступательного движения молекул.

Средняя кинетическая энергия молекул. Распределение молекул по степеням свободы
Выражение для энергии поступательного движения молекулы выведено для одноатомног

Скорости молекул. Распределение молекул по скоростям
Для характеристики скорости теплового движения выразим среднюю квадратичную скорость молекулы через температуру газа Т. Средняя кинетическая энергия ‹ε0›

Идеальный газ во внешнем поле
Если идеальный газ находится в силовом поле, то давление будет меняться от точки к точке, так как на молекулы газа действуют внешние силы. Рассмотрим наиболее простой случай, когда силы поля направ

Число соударений между молекулами и средняя длина свободного пробега молекул
В результате хаотического движения молекулы газа непрерывно сталкиваются друг с другом. Вычислим число соударений между молекулами для идеального газа. Для этого будем рассматривать молекулы, как у

Явления переноса. Коэффициент переноса. Ультраразреженные газы
Переход идеального газа из неравновесных состояний в равновесное происходит благодаря явлениям переноса: - теплопроводности или переноса энергии; - диффузии или переноса ма

Первое начало термодинамики
В термодинамике закон сохранения энергии выражается в виде I начала термодинамики, который формулируется следующим образом: теплота dQ, подведенная к замкнутой системе, расходуется на увелич

Теплоемкости газов
Удельной теплоемкостью вещества С называется количество теплоты dQ, необходимое для нагревания газа массой m = 1 кг на 1 градус

Работа газа при изопроцессах
В термодинамике изопроцессами называют процессы, при которых один из основных параметров сохраняется неизменным. В термодинамике работа расширения газа от объема V1 до

Адиабатический процесс
Адиабатическим называется такой процесс, когда между системой и окружающей средой отсутствует теплообмен (dQ = 0). Если dQ = 0, то из уравнения (10.22) следует, что

Круговые процессы (циклы)
Первое начало термодинамики, являющееся законом сохранения энергии, не указывает направления возможного протекания процессов. Любой процесс, при котором не нарушается закон сохранения энергии, возм

Второе начало термодинамики
Термодинамические процессы нельзя описать только первым началом термодинамики, который выражает закон сохранения и превращения энергии. Второе начало термодинамики определяет направление процесса и

Приведенное количество теплоты. Энтропия
Как уже говорилось выше, термический к.п.д. для обратимого цикла (11.1

Уравнение Ван-дер-Ваальса
Уравнение Менделеева-Клапейрона для одного моля идеального газа имеет вид

Изотермы Ван-дер-Ваальса и их анализ
После соответствующих преобразований уравнение (12.4) примет вид (12.6

Внутренняя энергия реального газа. Эффект Джоуля-Томсона
Как уже говорилось выше, для реального газа необходимо учитывать силы взаимодействия между молекулами. Силы притяжения между ними приводят к внутреннему давлению

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги