рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Вопрос 5 - Статические методы

Вопрос 5 - Статические методы - Лекция, раздел Механика, МЕХАНИКА ГРУНТОВ   Метод Испытания Свай Вертикальной Статической Нагрузк...

 

Метод испытания свай вертикальной статической нагрузкой, несмотря на сложность, длительность и значительную стоимость, позволяет наиболее точно установить предельное сопротивление сваи с учетом всех геологических и гидрологических условий строительной площадки. По ГОСТ 5686 – 94 такой проверке подвергают 1 % общего числа погружаемых свай, но не менее двух, если их число меньше 100 штук. Для проведения испытаний оборудуется специальная установка (Рисунок 33).

 

Рисунок 33 - Испытания свай вертикальной статической нагрузкой:

1 – испытываемая свая; 2 – анкерные сваи; 3 – реперная

система; 4 – прогибомеры; 5 - домкрат; 6 – упорная балка

 

Осадка сваи измеряется прогибомерами с точностью до 0,1 мм. При испытании вертикальную нагрузку на сваю увеличивают ступенями, равными 1/10…1/15 от ожидаемого предельного сопротивления сваи. Каждая последующая ступень нагрузки прикладывается после условной стабилизации осадки сваи на предыдущей ступени. Осадка считается условно стабилизировавшейся, если ее приращение не превышает 0,1 мм за 1 ч наблюдения для песчаных грунтов и за 2 ч для глинистых.

 

Метод статического зондирования грунтов. В настоящее время большое распространение получил метод статического зондирования, как более дешевый и быстрый.

Статическое зондирование заключается во вдавливании в грунт стандартного зонда, состоящего из штанги с конусом на конце (диаметр основания конуса 36 мм, площадь 10 см2, угол заострения 600). Конструкция зонда позволяет измерять не только общее сопротивление его погружению, но и величину лобового сопротивления конуса. Существует два типа зондов. Учитывая, что характер деформации грунтов при вдавливании свай и при погружении конического зонда статической нагрузкой аналогичен, полученные данные о сопротивлении грунта вдавливанию зонда можно использовать для определения предельных сопротивлений свай.

Предельное сопротивление грунта под нижним концом забивной сваи Rs, по данным зондирования в рассматриваемой точке определяется по формуле (8.24):

 

Rs = β1 q s , (8.24)

 

где β1 – коэффициент перехода от сопротивления грунта под нижним концом зонда к сопротивлению грунта под острием сваи;

q s - среднее значение сопротивления грунта, кПа.

 

Осадку свайного фундамента определяют по формуле (8.9):

n

s = β Σ (σ z p i . h i ) / Е i , (8.9)

i = 1

 

 

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

 

1 Основная

 

1.1. Механика грунтов, основания и фундаменты: Учеб. пособие /
С.Б.Ухов, В.В.Семенов, В.В.Знаменский и др.; Под ред.
С.Б.Ухова. - М.: Высш. шк., 2002.

1.2. Маслов Н.Н. Основы инженерной геологии механики грунтов. - М.: Высш. шк., 1990. – 431 с.

 

 

2 Дополнительная

 

 

2.1. СНИП 3. 06. 03 - 85. АВТОМОБИЛЬНЫЕ ДОРОГИ / ГОССТРОЙ СССР. –

М. : ЦИТП ГОССТРОЯ СССР, 1986. - 112 С.

2.2. Голубь Г.Н., Дехтерев Д.С., Тумаков С.А., Шмидт А.А. Основания и фундаменты в дорожном строительстве: Учеб. пособие. – Ярославль: ЯГТУ, 2007. – 124 с.

2.3. Далматов Б.И. Механика грунтов, основания и фундаменты. - М.: Стройиздат, 1988. – 415 с.

2.4. Бабков В.Ф., Безрук В.М.. Основы грунтоведения и механика грунтов. - М.:Высш. шк., 1986. - 239 с.

2.5. Основания, фундаменты и подземные сооружения: Справочник
проектировщика / Под ред. Е.А.Сорочана, Ю.Г.Трофименкова. -
М., 1985.

2.6. ГОСТ 25100-95 Грунты. Классификация. М., 1986.

2.7. СНиП 2.02.01-83. Основания зданий и сооружений. М., 1985.

 

 

3 Учебно - методическая

 

3.3.1. УДК 624.15 Левкович Т.И., Левкович Ф.Н. Методические указания

к выполнению РГР и самостоятельной работе студентов 2 курса о/о (семестр 4) и выполнению контрольной работы студентами 3 курса з/о по дисциплине Б2.Б.7.3 «Механика грунтов», направление подготовки бакалавров: 270800 СТРОИТЕЛЬСТВО, профиль подготовки АД / Брянск. гос. технолог. акад. - Брянск: БГИТА, 2013. - 39 с.

3.3.2.

 
УДК 624.15 Механика грунтов: Методические указания к лабораторным занятиям и самостоятельной работе студентов-бакалавров 2 курса очной и 3 курса заочной форм обучения, обучающихся по направлению 270800 СТРОИТЕЛЬСТВО, профиль подготовки АД / Брянск. гос. технолог. акад. Сост. Т.И. Левкович, Г.Н. Левкович – Брянск: БГИТА, 2013. - 49 с.

 

Содержание

Введение ………………………………………………………………………..……4

 

Лекция № 1. Тема: «Физико-механические свойства (характеристики)

грунтов оснований. Часть 1 - Состав, строение и

состояние грунтов»………………………………………………………………..8

 

Лекция № 2. Тема: «Физико-механические свойства (характеристики)

грунтов оснований. Часть 2»…………………………………………………......17

 

Лекция № 3. Тема: «Напряженное состояние грунтов основания.

Определение напряжений в массивах грунтов» …………………………… 29

 

Лекция № 4. Тема: «Определение напряжений в массиве грунтов от

действия собственного веса и приближенными методами от

действия прилагаемых на грунт нагрузок »………………...............................44

 

Лекция № 5. Тема: «Расчет оснований по несущей способности

(прочности) и устойчивости» ……………………………………………………55

 

Лекция № 6 Тема: «Практические способы расчета несущей способности

и устойчивости оснований »...…………………………………………………..70

 

Лекция № 7. Тема: «Оценка устойчивости склонов, откосов и

массивных подпорных стенок».………………………………………………….79

 

Лекция № 8. Тема: «Расчет по деформациям»…………………………………102

 

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА ……………………………………………120

 

ПРИЛОЖЕНИЯ……………………………………………………………………..121

 

 

П Р И Л О Ж Е Н И Я

 

 

Приложение А

Условные сопротивления грунтов

Таблица ПА 1 – Условное сопротивление Rо, кПа, пылевато – глинистых грунтов

  Грунты Коэффи- циент пористости, е   Показатель текучести
    0,1   0,2   0,3   0,4   0,5   0,6
Супеси Iр ≤ 5 0,5 0,7 - - -
Суглинки 10<Iр≤15 0,5 0,7 1,0 - - -
Глины Iр > 20 0,5 0,6 0,8 1,1   - - -
                         

Примечание. Для промежуточных значений коэффициент пористости и условное сопротивление грунта определяют интерполяцией

 

Таблица ПА 2 - Условное сопротивление Rо, кПа, песчаных грунтов

Грунты песчаные Влажность Rо
Гравелистые и крупные  
Средней крупности Маловлажные Влажные и насыщенные
Мелкие Маловлажные Влажные и насыщенные
Пылеватые Маловлажные Влажные и насыщенные Насыщенные водой

 

Таблица ПА 3 – Условное сопротивление Rо, кПа, крупнообломочных грунтов

 

Грунты Из обломков пород Rо
Галечниковые (щебенистые) Кристаллических Осадочных  
Гравийные (дресвяные) Кристаллических Осадочных  

 

 

Таблица ПА 4 – Поправочные коэффициенты К1 и К2

 

Грунты К1 К2
Гравий, галька, песок гравелистый, крупный и средний   0,10     3,0
Песок мелкий 0,08 2,5
Песок пылеватый, супесь 0,06 2.0
Суглинок и глина твердые и полутвердые   0,04   2,0
Суглинок и глины пластичные 0,02 1,5

 

 

Приложение Б

Таблица ПБ 1 - Коэффициенты уменьшения среднего дополнительного давления (коэффициент рассеивания напряжений по глубине) под подошвой фундамента, α

 

  m= =z/b   Круглый фунда- мент   Прямоугольный в плане фундамент при а : b
      2,4     3,2          
1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
0,2 0,949 0,960 0,976 0,976 0,977 0,977 0,977 0,977 0,977 0,977 0,977
0.4 0,756 0,800 0,870 0,875 0,878 0,879 0,880 0,881 0,881 0,881 0,881
0,6 0,546 0,606 0,727 0,757 0,749 0,743 0,754 0,755 0,755 0,755
0,8 0,390 0,449 0,593 0,612 0,627 0,630 0,636 0,639 0,640 0,641 0,642
1,0 0,284 0,334 0,480 0,505 0,526 0,529 0,540 0,545 0,547 0,549 0,550
1,2 0,214 0,257 0,392 0,419 0,443 0,449 0,462 0,470 0,474 0.476 0.477
1,4 0,165 0,201 0,323 0,350 0,376 0,383 0,400 0,410 0,414 0,418 0,420
1,6 0,130 0,160 0,267 0,294 0,322 0,329 0,348 0,360 0,365 0,370 0,374
1,8 0,106 0,130 0,224 0,250 0,278 0,285 0,305 0,320 0,326 0,332 0,330
2,0 0,087 0,108 0,189 0,214 0,237 0,241 0,270 0,285 0,0,293 0,301 0,304
2,2 0,073 0.090 0,163 0,185 0,213 0,218 0,239 0,256 0,264 0,273 0,280
2,4 0.062 0,077 0,141 0.161 0,185 0,192 0,213 0,230 0,238 0,250 0,258
2,6 0,053 0,066 0,123 0,141 0,164 0,170 0,191 0,208 0,216 0,229 0,239
2,8 0,046 0,0,058 0,108 0,124 0,145 0,152 0,172 0,189 0,197 0,212 0,228
3,0 0,040 0,051 0,095 0,110 0,130 0,136 0,155 0,172 0,180 0,194 0,208
3,2 0,036 0,045 0,085 0,098 0,116 0,122 0,0.141 0,158 0,165 0,178 0,190
3,4 0,032 0,040 0.076 0,088 0,105 0,110 0,128 0,144 0,151 0,161 0,184
3.6 0,028 0,036 0,068 0,080 0,095 0,100 0,117 0,133 0,140 0,153 0,175
3,8 0,024 0,032 0,068 0,072 0,086 0,091 0,107 0,123 0,130 0,144 0,166
4,0 0,022 0,029 0,056 0,066 0,080 0,084 0.095 0,113 0,121 0,135 0,158
5.0 0,015 0,019 0,037 0,044 0,053 0,056 0,067 0.79 0,089 0,103 0.126
7,0 0,008 0,010 0,019 0.023 0,029 0,032 0,039 0,045 0.051 0,062 0,091
10.0 0,004 0,005 0,010 0,012 0,014 0,016 0.019 0,023 0,027 0,033 0,064

 

 

Таблица ПБ 2 – Нормативные значения модулей деформации Е, МПа

 

  Грунты Коэффициент пористости, е
0,45 0,55 0,65 0,75 0,85 0,95 1,05
  Пески: гравелистый, крупный, средний, мелкий, пылеватый                 - - -     - - - - -     - - - - -     - - - - -
  Супесь 0 ≤ IL ≤ 0,75             -   -
  Суглинки: 0 ≤ IL ≤ 0,25 0,25≤ IL ≤ 0,5 0,5≤ IL ≤ 0,75     -     -                     - -
  Глины: 0 ≤ IL ≤ 0,25 0,25≤ IL ≤ 0,5 0,5≤ IL ≤ 0,75     - - -     - -     -                

 

 

Приложение В

 

 

Таблица П. В1– Расчетные сопротивления грунта R, кПа,

под нижним концом забивных свай

 

    Глубина   погружения   нижнего   конца   свай, z0, м     R для песчаных грунтов средней плотности  
Гравели-стых   Крупных   - Средней крупности   Мелких       Пылеватых       -
  R для глинистых грунтов с показателем текучести I L  
    0,1   0,2   0,3   0,4   0,5   0,6
6600/4000 3100/2000 2000/1200
6800/5100 3200/2500 2100/1600
7000/6200 3400/2800 2200/2000
7300/6900 3700/3300 2400/2200
7700/ 7300 4000/3500 2600/2400
8200/7500 4400/4000
4800/4500
                 

 

 

Примечания: 1 – Над чертой даны значения R для песчаных грунтов, под чертой – для глинистых. 2 - Для промежуточных глубин z0 и промежуточных значений показателя текучести I L значения R определяют интерполяцией. 3 – Для плотных песков значения R следует увеличить на 100 %, если плотность устанавливалась по данным статического зондирования, и на 60 %, но не более 20 МПа, если по другим видам инженерных изысканий.

 

 

Таблица П.В.2 - Расчетные сопротивления грунта f I , кПа, по боковой

поверхности забивных свай

Средняя глубина расположения слоя грунта zi, м f I для песчаных грунтов средней плотности
Крупных и средней крупности   Мелких   Пылеватых   -   -   -   -   -   -
f I для глинистых грунтов с показателем текучести I L
  0,2   0,3   0,4   0,5   0,6   0,7   0,8   0,9   1,0

 

Несущую способность пирамидальных и ромбовидных свай определяют с учетом дополнительного сопротивления грунта, вызванного наклоном боковых граней сваи и зависящего от модуля его деформации. Методика расчета таких свай практическим методом изложена в СНиП 2.02.03 – 85.

Несущую способность висячих свай, изготовленных в грунте, также можно рассчитывать по формулам, но при других значениях входящих в них коэффициентов и расчетных сопротивлений грунтов (СНиП 2.02.03 – 85).

 

 

ЛЕВКОВИЧ ТАТЬЯНА ИВАНОВНА

ЛЕВКОВИЧ ФЕДОР НИКОЛАЕВИЧ

 

– Конец работы –

Эта тема принадлежит разделу:

МЕХАНИКА ГРУНТОВ

Кафедра автомобильных дорог... М Е Х А Н И К А Г Р У Н Т О В... КУРС ЛЕКЦИЙ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Вопрос 5 - Статические методы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

КУРС ЛЕКЦИЙ
Для студентов 2 курса о/о (семестр 4) и 3 курса з/о по дисциплине Б2.Б.7.3 «Механика грунтов». Направление подготовки бакалавров: 270800 СТРОИТЕЛЬСТВО. Профиль подготовки АД. Квалификация (степень)

Очная форма обучения
    № п/п Раздел дисциплины, номер лекции, тема и основные вопросы, трудоемкость в часах   Форма лекционного занятия &n

Вопрос 1 - Происхождение грунтов. Составные части грунтов
  Грунтовые основания. Всякое сооружение расположено на грунтовом основании. Обычно основание состоит из разных типов грунтов, очень редко из грунта одного типа.

Вопрос 2 – Виды воды в грунте
Свойства всех разновидностей грунтов, особенно песчаных, пылеватых и глинистых, самым существенным образом зависят от состава и содержания в них воды. Можно выделить следующие состояния воды в грун

Вопрос 3 – Газообразная составляющая грунта
Содержание воды и газа в грунте зависит от объема его пор: чем больше поры заполнены водой, тем меньше в них содержится газов. В самых верхних слоях грунта газообразная составляющая представлена ат

Вопрос 4 – Структура, текстура и связность грунтов
Структурой грунтов называют их строение, то есть взаимное расположение отдельных минеральных частиц или агрегатов частиц, на которые могут распадаться грунты. Образование структурн

Вопрос 1 - Основные физико - механические характеристики грунтов
К основным физико-механическим характеристикам грунтов относят: плотность грунта; плотность сухого грунта; природную влажность и ряд других, часть из них определяют опытным путем. На основе этих из

Вопрос 3 – Строение оснований
  Сооружение редко располагается на одном грунте. Обычно в основании залегают несколько типов грунтов (Рисунок 1). Тогда кроме оценки свойств каждого грунта возникает не менее важная

Лекция № 3
Тема: «Наряженное состояние грунтов основания. Определение напряжений в массивах грунтов» Вопросы: 1 – Основные положения. Расчетная схема взаимодейств

Сооружения и основания
Распределение напряжений в грунтовой толще зависит от многих факторов. Прежде всего к ним относятся: характер и режим нагружения массива, инженерно – геологические и гидрогеологические особенности

Вопрос 3 – Определение напряжений в грунтовом массиве от действия местной нагрузки на его поверхности.
  Распределение напряжений в основании определяется методами теории упругости. Основание при этом рассматривают как упругое полупространство, бесконечно простирающееся во все стороны

Вопрос 4 – Влияние формы и площади фундамента в плане
  Пользуясь выше приведенными формулами и табличными коэффициентами, можно построить эпюры нормальных напряжений σ z по вертикальной оси, проходящей ч

Вопрос 1 – Определение напряжений в массиве грунтов от действия собственного веса
Напряжения, возникающие в массиве грунтов от действия сооружения, накладываются на поле начальных напряжений, сформировавшихся в массиве к моменту строительства. В общем случае начальные напряжения

Вопрос 2 – Определение напряжений по методу угловых точек.
По формуле (3.9) можно легко найти вертикальное напряжениеσ z под угловыми точками. Однако, согласно работам Н.А. Цытовича и К.Е.Егорова, этим выражением можно восп

Вопрос 3 – Действие равномерно распределенной
полосовой нагрузки (плоская задача)   По мере увеличения отношения длины площади загружения l к ее ширине задача по определению напряжений все с большим осно

Вопрос 1 – Основные положения теории предельного равновесия
  Практика показывает, что при определенных условиях может произойти потеря устойчивости части грунтового массива, которая сопровождается разрушением построенного на нем сооружения. К

С помощью уравнений (5.3) и (5.4) можно оценить напряженное состояние грунта в любой точке, предварительно определив компоненты этих уравнений.
В основу теории предельного равновесия положено представление о том, что предельное состояние возникает во всех точках рассматриваемого массива грунтов. Тогда система уравнений, описывающая такое н

На грунты основания
  Если грунт обладает связностью, а ступени нагрузки не велики, то начальный участокОаграфика зависимостей s = f (р) на рисунке 17, абудет почти гори

Вопрос 3 - Начальная критическая нагрузка
  По определению, начальная критическая нагрузка соответствует случаю, когда в основании под подошвой фундамента в единственной точке под гранью фундамента возникает предельное состоя

Вопрос 4 – Нормативное сопротивление и расчетное давление
  Проведенными многочисленными наблюдениями за осадками построенных сооружений было установлено, что если допустить под подошвой центрально-нагруженного фундамента шириной b

Вопрос 5 – Предельная критическая нагрузка
  Предельная критическая нагрузка ри соответствует напряжению под подошвой фундамента, при котором происходит исчерпание несущей способности грунтов основания

Вопрос 1 – Расчет основания по несущей способности
  Практические способы расчета устойчивости оснований фундаментов и сооружений регламентированы существующими строительными нормами. Исходными данными для таких расчетов являются:

Вопрос 2 – Расчет фундамента на плоский сдвиг
  В этом случае выражение (6.1) может быть представлено в виде (6.6):   ∑ Fsa ≤ γ c ∑ Fsr. /

Вопрос 3 - Понятие о коэффициенте устойчивости
  Во многих случаях при инженерных расчетах оказывается удобно использовать понятие коэффициента устойчивости kst. Коэффициент устойчивост

Значение kst < 1 показывает, что прочность объекта не обеспечена, то есть неизбежно его разрушение.
Например, применительно к условию (6.1) коэффициент устойчивости запишется следующим образом (6.9):   kst = Fu. / F , (6.9)   Мож

Вопрос 4 – Расчет фундамента по схеме глубинного сдвига
  При большой глубине подвала стены испытывают давление грунта засыпки с внешней стороны здания. Потеря устойчивости может иметь форму поворота фундамента вокруг некоторого центра вра

Тема: «Оценка устойчивости склонов, откосов и
массивных подпорных стенок» Вопросы: 1 – Устойчивость откоса в идеально сыпучих грунтах 2 – Учет влияния фильтрационных сил

Вопрос 1 - Устойчивость откоса в идеально сыпучих грунтах
  Откосом называют искусственно созданную поверхность, ограничивающую природный грунтовый массив, выемку или насыпь (дорожное полотно, дамбы, земляные плотины, котлованы, траншеи, кан

Вопрос 2 – Учет влияния фильтрационных сил
  Если уровень подземных вод в массиве сыпучего грунта находится выше подошвы откоса, возникает фильтрационный поток, выходящий на его поверхность (Рисунок 23, б), что приводит к сниж

Вопрос 3 – Устойчивость вертикального откоса в идеально связных грунтах
  В отличие от сыпучих грунтов предельный угол заложения откосов, сложенных связными грунтами (φ = 0, с не равно нулю), не является постоянным и меняется с увели

Обладающих трением и сцеплением
    Для предельного значения высоты вертикального откоса в грунтах, обладающих трением и сцеплением (когда угол внутреннего трения и сцепление не равны нулю) при

Поверхность, ограничивающую откос
  Задача заключается в следующем. Пусть задан откос с известным углом заложения α и характеристиками грунта φ, c и γ.

Вопрос 7 – Метод кругло цилиндрических поверхностей скольжения
  Основным недостатком рассмотренных выше методов является то, что полученные решения справедливы при относительно однородных пол физико-механическим свойствам массивах грунтов. В слу

Вопрос 8 – Учет действия подземных вод
  Действие подземных вод на состояние оползневого склона проявляется различными путями. Вода оказывает взвешивающее действие на слагающие склон грунты, изменяя силы гравитации. Насыща

Вопрос 9 – Учет сейсмических воздействий
  Сейсмические воздействия являются мощным фактором активизации оползневых процессов. В истории известны многие примеры катастрофических оползней, сопровождающих землетрясения. С этим

Вопрос 10 – Другие методы расчета устойчивости откосов
  Определение устойчивости откосов и склонов при произвольной поверхности скольжения (слабые грунты, трещины в скальных породах, контакт дисперсных пород и скального основания –

Вопрос 11 - Расчет устойчивости подпорных стенок
  Ограждающие конструкции предназначены для того, чтобы удерживать от обрушения находящийся за ними грунтовый массив.

Вопрос 12 - Длительная устойчивость откосов, склонов и удерживающих конструкций
  Грунты являются реологической средой. Снижение прочности грунтов во времени приводит к постепенному уменьшению устойчивости массивов горных пород и оснований сооруж

Вопрос 1 - Виды и природа деформаций грунта
  Под действием нагрузки, приложенной к основанию сооружения через фундамент, в грунте основания возникает напряженное состояние, которое вызывает развитие его деформаций, приводящих

Мелкого заложения по второй группе предельных состояний
(расчет по деформациям)   Расчет по второй группе предельных состояний производят с целью предотвращения предельных деформаций оснований и фундаментов (осадо

Предельных состояний методом послойного суммирования
  Расчет осадки фундамента методом послойного суммирования рекомендован СНиП 2.02.01 – 83и является основным при расчетах осадок фундаментов зданий и сооружений.

Вопрос 3 – Расчет и проектирование свайных фундаментов
  Основные положения расчета. Расчет свайных фундаментов и их оснований ведут по двум группам предельных состояний: по первой группе – по несущей спос

М Е Х А Н И К А Г Р У Н Т О В
    Курс лекций для студентов 2 курса о/о (семестр 4) и 3 курса з/о, нап

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги