рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Определение напряженийσzпри действии местного равномерно распределенного давления (метод угловых точек).

Определение напряженийσzпри действии местного равномерно распределенного давления (метод угловых точек). - раздел Механика, МЕХАНИКА ГРУНТОВ Если Закон Распределения Давления По Поверхности Изотропного Линейно-Деформир...

Если закон распределения давления по поверхности изотропного линейно-деформируемого полупространства известен, то элементарное суммирование можно заменить интегрированием.


= – при разворачивании этого интеграла получается очень громоздкая формула, поэтому при равномерно распределенном давлении после интегрирования по прямоугольной площади загружения значения для точек, расположенных под центром прямоугольной площади загружения (рис. 4.9, а), получим:

 

, (4.10)

где = f – принимается по таблице 4.2; Р – равномерно распределенное давление.

 

 

 

Рис. 4.9. Расчетные схемы к определению напряжений при действии местного равномерно распределенного давления: а – для точек, расположенных под центром прямоугольной площади загружения; б – под угловыми точками прямоугольной площади загружения

 

При нахождении под угловыми точками прямоугольной площади загружения (например, под точкой М) (рис. 4.9, б), значения (а не 2∙Z, т. к. в1=2в), также можно принимать по таблице 4.2.

Напряжение под угловыми точками определяют по формуле

 

= .

 

Для определения вертикального напряжения в любой точке полупространства можно воспользоваться выражением = . Действительно, если проекция рассматриваемой точки М' на горизонтальную поверхность полупространства (точка М) располагается в пределах площади загружения (рис. 4.10, а), то эту площадь можно разбить на четыре прямоугольника (I – Meaf, II – Mfbg, III – Mgch, IV – Mhde) так, чтобы точка М была угловой точкой каждого из них.

 

 

Рис. 4.10. Расчетные схемы к определению напряжений при действии местного равномерно распределенного давления: а – для точек, расположенных внутри прямоугольной площади загружения; б – под точками, расположенными вне прямоугольной площади загружения

 

Таблица 4.2

Определение коэффициента α

 

ζ = 2z/b Коэффициент α для фундаментов  
круглых прямоугольных с соотношением сторон η = l/b равным ленточ- ных η =≥10  
1,0 1,4 1,8 2,4 3,2  
1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000  
0,4 0,949 0,960 0,972 0,975 0,976 0,977 0,977 0,977  
0,8 0,756 0,800 0,848 0,866 0,876 0,879 0,881 0,881  
1,2 0,547 0,606 0,682 0,717 0,739 0,749 0,754 0,755  
1,6 0,390 0,449 0,532 0,578 0,612 0,629 0,639 0,642  
2,0 0,285 0,336 0,414 0,463 0,505 0,530 0,545 0,550  
2,4 0,214 0,257 0,325 0,374 0,419 0,449 0,470 0,477  
2,8 0,165 0,201 0,260 0,304 0,349 0,383 0,410 0,420  
3,2 0,130 0,160 0,210 0,251 0,294 0,329 0,360 0,374  
3,6 0,106 0,131 0,173 0,209 0,250 0,285 0,319 0,337  
4,0 0,087 0,108 0,145 0,176 0,214 0,248 0,285 0,306
4,4 0,073 0,091 0,123 0,150 0,185 0,218 0,255 0,280
4,8 0,062 0,077 0,105 0,130 0,161 0,192 0,230 0,258
5,2 0,053 0,067 0,091 0,113 0,141 0,170 0,208 0,239
5,6 0,046 0,058 0,079 0,099 0,124 0,152 0,189 0,223
6,0 0,040 0,051 0,070 0,087 0,110 0,136 0,173 0,208
6,4 0,036 0,045 0,062 0,077 0,099 0,122 0,158 0,196
6,8 0,031 0,040 0,055 0,064 0,088 0,110 0,145 0,185
7,2 0,028 0,036 0,049 0,062 0,080 0,100 0,133 0,175
7,6 0,024 0,032 0,044 0,056 0,072 0,091 0,123 0,166
8,0 0,022 0,029 0,040 0,051 0,066 0,084 0,113 0,158
8,4 0,021 0,026 0,037 0,046 0,060 0,077 0,105 0,150
8,8 0,019 0,024 0,033 0,042 0,055 0,071 0,098 0,143
9,2 0,017 0,022 0,031 0,039 0,051 0,065 0,091 0,137
9,6 0,016 0,020 0,028 0,036 0,047 0,060 0,085 0,132
10,0 0,015 0,019 0,026 0,033 0,043 0,056 0,079 0,126
10,4 0,014 0,017 0,024 0,031 0,040 0,052 0,074 0,122
10,8 0,013 0,016 0,022 0,029 0,037 0,049 0,069 0,117

Окончание табл. 4.2

 

ζ = 2z/b Коэффициент α для фундаментов  
круглых прямоугольных с соотношением сторон η = l/b равным ленточ- ных η =≥10  
1,0 1,4 1,8 2,4 3,2  
11,2 0,012 0,015 0,021 0,027 0,035 0,045 0,065 0,113
11,6 0,011 0,014 0,020 0,025 0,033 0,042 0,061 0,109
12,0 0,010 0,013 0,018 0,023 0,031 0,040 0,058 0,106

 

Тогда напряжение найдем суммированием напряжений под угловыми точками четырех площадей загружения:

 

=,

 

где – коэффициенты, принимаемые по таблице в зависимости от отношения сторон площадей загружения I, II, III, IV и отношения Z (глубины расположения точки М') к ширине каждой из этих площадей.

Когда проекция точки М' на горизонтальную поверхность полупространства (точка М) располагается вне пределов площади загружения (рис. 4.6, б), точку М аналогично можно представить как угловую точку фиктивных площадей загружения I, II, III, IV. При этом в пределах площадей II и IV фиктивная нагрузка прикладывается в обратном направлении. Напряжение определяется по выражению

 

sz = .

 

Обобщая формулы, можно дать следующее определение методу угловых точек: напряжение в произвольной точке от нагрузки, распределенной по прямоугольной площади, равно алгебраической сумме напряжений в угловых точках прямоугольников, для которых рассматриваемая точка является угловой, при этом алгебраическая сумма площадей этих прямоугольников с учетом знаков в формуле суммирования напряжений должна совпадать с фактической площадью нагрузки.

Так, пользуясь методом угловых точек, можно найти напряжение sz в любой точке полупространства, к поверхности которого приложена равномерно распределенная нагрузка в пределах прямоугольной площади.

4.4. Напряжения, возникающие от действия собственного веса грунта

Фактическое напряженное состояние грунтов основания при современных методах изысканий точно определить не представляется возможным. В большинстве случаев ограничиваются нахождением вертикального напряжения от действия веса вышележащих грунтов. Вертикальные напряжения от собственного веса грунта называют бытовыми давлениями,а график их изменения по глубине – эпюрой бытовых давлений.Напряжения от собственного веса грунта определяются на основании следующих упрощающих гипотез: 1) напряженным состоянием грунта при действии его собственного веса является осесимметричное компрессионное сжатие; 2) вертикальные напряжения в грунте определяются суммированием напряжений от веса элементарных слоев грунта; 3) грунт, находящийся ниже уровня грунтовых вод, испытывает взвешивающее действие воды;
4) слой грунта, находящийся ниже водоносного слоя, называется водоупороми испытывает на своей поверхности гидростатическое давление водяного столба.

Определяем напряжение от собственного веса грунта (природного или бытового) по формуле

 

, ,

 

где n – число слоев грунта в пределах глубины z; gi – удельный вес грунта i-го слоя, кН/м3;
hi – толщина или мощность этого слоя, м.

Удельный вес водопроницаемых грунтов, залегающих ниже уровня грунтовых вод, принимается с учетом взвешивающего действия воды согласно выражению

 

gsb=(gs – gw)/(1+e),

 

где gw – удельный вес воды, gw = 10 кН/м3; gs – удельный вес частиц грунта;
е – коэффициент пористости.

Формула используется для вычисления бытовых давлений на границах геологических слоев, на линии уровня грунтовых вод и на границе водоупора. В остальных сечениях бытовые давления могут быть определены по линейной интерполяции. На рис. 4.11 представлены характерные эпюры бытовых давлений в грунтовом массиве. На границах геологических слоев угол наклона эпюры, как правило, изменяется в связи с изменением величины удельного веса грунта. На линии уровня грунтовых вод (WL) имеет место самый заметный перегиб эпюры, вызванный уменьшением удельного веса грунта во взвешенном состоянии. На границе водоупора эпюра имеет скачок на величину гидростатического давления от веса столба воды над водоупором.

Деформации от действия веса природного грунта считаются давно стабилизировавшимися. Исключение составляют случаи действия свежеотсыпанной насыпи или понижения уровня подземных вод. При большой мощности толщи насыщенных водой сильносжимаемых грунтов, обладающих ползучестью, иногда приходится считаться с незавершенной фильтрационной консолидацией и консолидацией ползучести.

 

 

Рис. 4.11. Характерные эпюры распределения бытовых напряжений в массиве грунта:
а – однородный массив; б – массив, представленный тремя инженерно-геологическими элементами;
в – то же, но при этом третий слой является водоупором; HwL – расстояние
от водоупора до уровня грунтовых вод

5. Деформации грунтов и расчет осадок фундаментов

5.1. Виды и природа деформаций грунтов

Целью расчета оснований по деформациям является ограничение абсолютных и (или) относительных перемещений фундаментов и надфундаментных конструкций такими пределами, при которых гарантируется нормальная эксплуатация сооружения и не снижается его долговечность (вследствие появления недопустимых осадок, подъемов, кренов, изменений проектных уровней и положений конструкций, расстройств их соединений и т. п.).

Под действием нагрузки, приложенной к основанию через фундамент, в грунте основания возникает напряженное состояние, которое вызывает развитие деформаций, приводящих к перемещению (осадке) фундамента и поверхности грунта вокруг него.

Поскольку грунт состоит из твердых частиц (твердых тел) и пор, заполненных водой и воздухом (жидкостью и газом), его деформации будут развиваться в зависимости от деформативности указанных составляющих. Виды деформаций грунта и физические причины, их вызывающие, можно систематизировать (табл. 5.1).

Как правило, при расчете осадок фундаментов рассматривают интегрально остаточные деформации уплотнения и деформации искажения формы. Из упругих деформаций изменения объема учитывают только деформации замкнутых пузырьков воздуха (газа), так как деформации объема твердых частиц и воды в тысячи раз меньше остаточных деформаций уплотнения.

 

Таблица 5.1

Основные физические причины различных видов деформаций грунта

 

Виды деформаций Физические причины деформаций
Упругие деформации: искажения формы Действие молекулярных сил упругости, развивающихся при искажении структурной решетки твердых частиц и цементирующего коллоидного вещества
изменения объема Действие молекулярных сил упругости замкнутых пузырьков воздуха, тонких пленок воды и твердых частиц
Остаточные деформации: уплотнения Разрушение скелета грунта и отдельных eго частиц в точках контактов, взаимный сдвиг частиц, выдавливание поровой воды, обусловливающие уменьшение пористости (компрессию грунта)
пластические Развитие местных сдвигов в областях предельного напряженного состояния
просадки Резкое нарушение природной структуры грунта при изменении условий его существования (замачивание лёссов, оттаивание мерзлых грунтов и др.)
набухания Проявление расклинивающего эффекта в результате действия электромолекулярных сил и выделение из поровой воды растворенного в ней газа при понижении давления

5.2. Особенности деформирования грунтов

Особенности деформирования грунтов выявляются в результате экспериментов, характер нагружения рассматривался в п. 4.1 «Фазы напряженно-деформированного состояния грунта».


– Конец работы –

Эта тема принадлежит разделу:

МЕХАНИКА ГРУНТОВ

Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет... С А Пьянков...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Определение напряженийσzпри действии местного равномерно распределенного давления (метод угловых точек).

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МЕХАНИКА ГРУНТОВ
  Учебное пособие для студентов высших учебных заведений, обучающихся по специальностям 27010265 «Промышленное и гражданское строительство» и 27010965 «Теплогазоснабжение и вентиляция

Пьянков, С. А., Азизов З. К.
П 87 Механика грунтов : учебное пособие / С. А. Пьянков, З. К. Азизов ; Ульян. гос. техн. ун-т. – Ульяновск : УлГТУ, 2008. – 97 с. ISBN 5-89146-700-0    

Выписка из ГОС ВПО
ОПД.Ф.07 Механика грунтов: состав, строение и состояние грунтов; физико-механические свойства грунтов основания; распределение напряжений в грунтовом массиве; расчет о

Образование грунтов (генезис).
Континентальные отложения: · элювиальные (форма зерен угловатая); · делювиальные (перемещенные атмосферными водами и силами тяжести, напластования н

Структура, текстура и структурные связи грунта.
Следует различать структуру грунта, т. е. взаимное расположение частиц грунта и характер связи между ними и текстуру грунта, т. е. сложение грунта в массиве. Под структуро

Состав грунтов.
Грунты состоят из: твердых частиц; воды в различных видах и состояниях (в том числе льда при нулевой или отрицательной температуре грунта); газов (в том числе и воздуха). Вода и газы наход

Свойства твердых частиц.
Твердая минеральная масса состоит из первичных зерен скелета грунта (обломков горных пород и минералов) и вторичных частиц, служащих цементирующим веществом грунта. С

Свойства воды.
Свойства всех разновидностей грунтов, особенно песчаных, пылеватых и глинистых, самым существенным образом зависят от состава и содержания в них воды. В грунте различают кристаллизационную, или хим

Свойства газа.
Содержание воды и газа в грунте зависит от объема его пор: чем больше поры заполнены водой, тем меньше в них содержится газов. В самых верхних слоях грунта газообразная составляющая представлена ат

Структурно-неустойчивые грунты
Структурно-неустойчивыми называют такие грунты, которые обладают способностью изменять свои структурные свойства под влиянием внешних воздействий с развитием значительных осадок, п

Мерзлые и вечномерзлые грунты.
Грунты всех видов относят к мерзлым грунтам, если они имеют отрицательную температуру и содержат в своем составе лед. Вечномерзлыми называют грунты, которые находятся в мерзлом состоянии н

Лёссовые грунты.
Лёссовые грунты по своей структуре и составу значительно отличаются от других видов грунтов. У лёссовых грунтов размер пор значительно превышает размер твердых частиц, такие грунты по-другому назыв

Слабые водонасыщенные грунты.
К слабым водонасыщенным грунтам относят илы, ленточные глины и другие виды глинистых грунтов, характерными особенностями которых являются их высокая пористость в природном состоянии, насыщенность в

Торфы и заторфованные грунты.
Торф – это органический грунт, образовавшийся в результате естественного отмирания и неполного разложения болотных остатков. Состав болотных остатков в них – не менее 50%. Песчаные пылеват

Основные расчетные модели грунтов
Требования к расчетным моделям Точность прогнозов в механике грунтов в большой степени определяется тем, с какой полнотой в уравнениях состояния отражаются особенности деформирования грунт

Основные характеристики физических свойств грунтов, отбор образцов
Физические свойства грунтов характеризуют их физическое состояние в условиях природного (ненарушенного) залегания. Исследование свойств грунтов предусматривает получение м

Условия работы грунтов в массиве. Основные законы и свойства, механические характеристики
Механическими называются те свойства грунтов, которые характеризуют их поведение под нагрузкой. Под действием передаваемых сооружением вертикальных или наклонных сил в массиве основ

Физические представления
Так как грунт состоит из твердых частиц и пор, которые частично или полностью заполнены водой, теоретически при его сжатии должны уменьшаться объемы всех трех компонентов – твердых частиц, воздуха

В полевых условиях с помощью штампов.
Выполняя отбор проб для испытания грунтов, мы нарушаем его структуру и, следовательно, нарушаем его свойства. Поэтому производят полевые испытание грунта штампами: большого и малого диаметра.

Закон сопротивления сдвигу для различных грунтов, характерные зависимости. Угол внутреннего трения и угол естественного откоса, трение и сцепление
Сдвиг – процесс изменения расположения частиц грунта под действием внешних сил. Грунты в основании сооружений, а также при неодинаковых отметках их поверхности испытывают

Предельное сопротивление грунтов сдвигу есть функция первой степени нормального напряжения.
  τ = σ · tgφ + c, (3.6)   где τ – сопротивление сдвигу; σ – нормальное напряжение (давление)

Коэффициент фильтрации
Водопроницаемость связана с уплотнением грунта, так как при уплотнении из грунта в первую очередь извлекается влага. В строительстве фильтрационные свойс

Влияние подземных вод на строительные свойства грунтов и на фундаменты
На различной глубине от поверхности земли встречаются грунты, пропитанные водой. Эти воды называются грунтовыми, а верхняя поверхность их – уровнем грунтовых вод.

Влияние грунтовых вод на устойчивость и прочность основания
Изменение уровня грунтовых вод после возведения сооружения может резко понизить прочность основания и вызвать серьезные деформации сооружения в следующих случаях: · при наличии в грунте ле

Агрессивность грунтовых вод
Грунтовые воды, способные разрушать цементные бетоны и растворы, называются агрессивными. Агрессивность их зависит от химического состава растворенных в них солей и кислот. Эти вещества попа

Влияние физических и механических характеристик на строительные свойства грунтов
Характерные свойства грунтов длительное время воспринимать внешние нагрузки при деформациях оснований, не препятствующих нормальной эксплуатации зданий и сооружений, называют их строительными св

Фазы напряженно-деформированного состояния грунта
Фазы напряженно-деформированного состояния грунтаизучаются с целью установления расчетных моделей деформирования грунтового основания, приемлемых для инженерных расчетов его прочности, устойчивости

Доказательство применимости теории упругости к грунтам (постулаты теории упругости).
1. Деформации пропорциональны напряжениям     Рис. 4.2. За

Определение напряжений в массиве грунта при действии единичной вертикальной силы N, приложенной к границе грунтового основания.
Решение задачи Буссинеска. Основано на следующих гипотезах (впоследствии подтвержденных точными решениями): а) нормальные напряжения на площадках, касательных к сферическо

Линейные и нелинейные деформации.
В общем случае грунтам свойственна нелинейная деформируемость, причем в пределах фаз I и II, в некотором начальном интервале изменения напряжений она достаточно близка к линейной.

Метод послойного суммирования
В большинстве практических случаев основание сложено по глубине разнородными грунтами, представленными в материалах инженерно-геологических изысканий инженерно-геологическими элементами (ИГЭ). Мето

Порядок расчета
1. Строим расчетную схему. 2. Разбиваем грунтовый массив ниже подошвы фундамента шириной b на элементарные слои, исходя из следующих условий: · мощность любого элементарног

Допущения при расчете по этому методу
1. Линейная зависимость между напряжениями и деформациями. 2. Осадки рассматриваются, исходя из maxPz – под центром фундамента. 3. Не учитывается, как правило, с

Затухание осадки во времени
Затухание осадки грунтов во времени (их консолидация) является сложным процессом, на который оказывают влияние водопроницаемость, структура, поровое давление, ползучесть скелета грунта, сжимаемость

Реология и нелинейная механика грунтов
  Реология как наука, изучающая вопросы течения материалов, имеет три основных направления исследований: медленно развивающихся во времени деформаций – деформаций ползучести; расслабл

Длительная прочность грунта и релаксация напряжений
Если образец грунта подвергать деформациям сдвига, осевого сжатия или растяжения при различных нагрузках, то можно отметить, что чем большая нагрузка приложена к образцу, тем скорее наступает стади

Деформации ползучести грунта при уплотнении
Если деформацию образца водонасыщенного грунта в одометре или осадку слоя грунта без возможности бокового расширения изобразить во времени кривой в полулогарифмической системе координат, то она буд

Вопросы нелинейной механики грунтов
Ранее отмечалось, что близкая к линейной зависимость при небольших давлениях наблюдается в пределах фазы упругих деформаций и фазы уплотнения и местных сдвигов. Если давление по подошве жестких фун

Виды неравномерных осадок сооружений
  Причины развития неравномерных осадок в сооружении. Равномерная осадка сооружений обычно никаких трудностей не вызывает. (Известны отечественные с

Причины развития неравномерных осадок выпирания
Данные осадки возникают за счет появления зон пластических деформаций оснований и выдавливания грунта в стороны (рис. 5.25). При давлении Р = R глубина зон п

Причины развития неравномерных осадок разуплотнения
Sразупл. – развивается под действием нагрузки, не превышающей величину природной, т. е. нагрузки, равной весу вынутого грунта при откопке котлована. Эт

Причины развития неравномерных осадок расструктуривания
Наибольшее влияние на развитие общих осадок могут оказать осадки расструктуривания, Sрасстр., вызванные нарушением структуры грунтов основания при отрывке котлованов и устройстве

Причины развития неравномерных осадок в период эксплуатации
1. Уплотнение грунтов после начала эксплуатации Sэкспл. сооружения: · деформации ползучести грунта и процесс фильтрационной консолидации;

Особенности деформирования различных типов грунтов
Особенности деформирования грунтов по-разному проявляются у различных видов грунтов и существенно зависят от состояния грунта и интенсивности действующих нагрузок. Монолитные ска

Мероприятия по повышению устойчивости сооружений, откосов и склонов
Первое основное направление – это уменьшение суммарных активных воздействий на сооружение, способных вызвать нарушение их устойчивости. Примерами таких мероприятий в рассмотренных на рис.

Общие положения.
Ограждающие конструкции предназначены для того, чтобы удерживать от обрушения находящийся за ними грунтовый массив. Характерным примером ограждающей конструкции является подпорная стенка – к

Определение активного давления на вертикальную гладкую стенку при горизонтальной поверхности засыпки.
Рассмотрим простейший случай, когда засыпка представлена идеально сыпучим грунтом (рис. 6.8). Поскольку принято, что стенка имеет абсолютно гладкую грань, т. е. трение грунта о стенку отсутствует (

Учет нагрузки на поверхности засыпки.
При наличии на поверхности сплошной равномерно распределенной нагрузки интенсивностью (рис. 6.9, а) выражение (6

Учет наклона, шероховатости задней грани стенки и наклона поверхности засыпки.
Этот случай является общим. Рассмотрим предельное равновесие призмы обрушения ОАВ согласно расчетной схеме, представленной на рис. 6.9, а. Здесь

Определение активного давления при ломаной форме грани стенки и неоднородных грунтах засыпки.
В этом случае стенка и грунты засыпки разделяются по горизонтали на отдельные участки, в пределах которых угол наклона стенки и физико-механические характеристики грунтов (

Определение пассивного давления.
Как указывалось выше, пассивное давление возникает при перемещении стенки в сторону грунта засыпки. Характерный пример такого случая показан на рис. 6.12, а. Под действием активного давления справа

ЗАКЛЮЧЕНИЕ
Механика грунтов – научная дисциплина, изучающая напряженно-деформированное состояние грунтов, условия их прочности, давление на ограждения, устойчивость грунтовых массивов и др. В механике грунтов

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги