рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Особенности деформирования различных типов грунтов

Особенности деформирования различных типов грунтов - раздел Механика, МЕХАНИКА ГРУНТОВ Особенности Деформирования Грунтов По-Разному Проявляются У Различных Видов Г...

Особенности деформирования грунтов по-разному проявляются у различных видов грунтов и существенно зависят от состояния грунта и интенсивности действующих нагрузок.

Монолитные скальные грунты при нагрузках, возникающих в результате строительства промышленных и гражданских сооружений, обычно могут рассматриваться как практически недеформируемые тела. Однако трещиноватая скала и разборный скальный грунт обладают некоторой деформируемостью. Разрушенные структурные связи в скальных грунтах со временем не восстанавливаются.

Объемные деформации крупнообломочных и однородных по гранулометрическому составу песчаных грунтов в значительной степени обусловливаются упругим сжатием частиц, а по мере увеличения нагрузки – пластическим разрушением контактов между ними. В неоднородных песках будут развиваться значительные деформации уплотнения.
В водонасыщенных песчаных грунтах это сопровождается отжатием воды из пор. Поскольку размеры пор в песчаных грунтах относительно велики, процесс консолидации в них протекает значительно быстрее, чем в глинистых грунтах. Сдвиговые деформации в крупнообломочных и песчаных грунтах происходят за счет взаимного перемещения частиц с учетом разрушения контактов.

Наиболее сложно развивается процесс деформирования в глинистых грунтах. Объемные деформации в них связаны с более плотной переупаковкой частиц, окруженных пленками связанной воды, с уменьшением объема пор, с отжатием поровой воды и упругим сжатием защемленных пузырьков воздуха. Сдвиговые деформации в глинистых грунтах главным образом связаны с перемещением и переупаковкой частиц, окруженных гидратной оболочкой.

Интенсивность проявления деформаций в глинистых грунтах в большой мере зависит от характера структурных связей и величины действующих нагрузок. При нагрузках, не превышающих структурной прочности, глинистые грунты могут проявлять упругие свойства. Дальнейшее увеличение нагрузки вызывает постепенное разрушение структурных связей и интенсивное уплотнение грунта. Разрушенные водно-коллоидные связи со временем восстанавливаются, и после уплотнения глинистого грунта наблюдается его упрочнение.

Размеры пор в глинистых грунтах крайне малы, поэтому процесс консолидации в них протекает очень медленно. Деформации могут не стабилизироваться в течение многих месяцев, лет, даже десятилетий. Также медленно могут развиваться и процессы ползучести, связанные с взаимным смещением частиц, окруженных водными пленками, поворотом, изгибом и разрушением отдельных частиц.

 

 

6. Устойчивость откосов и склонов, давление грунта на подпорные стены

6.1. Общие положения

 

Откосом называется искусственно созданная поверхность, ограничивающая природный грунтовый массив, выемку или насыпь. Откосы образуются при возведении различного рода насыпей (дорожное полотно, дамбы, земляные плотины и т. д.), выемок (котлованы, траншеи, каналы, карьеры и т. п.) или при перепрофилировании территорий.

Склоном называется откос, образованный природным путем и ограничивающий массив грунта естественного сложения.

Откос отличают от склона большим углом наклона свободной поверхности к горизонтали. По различным литературным источникам откосом называют склон с углом наклона свободной поверхности к горизонтали более 30°. Нормативная классификация грунтовых массивов, подразделяющая их на склоны и откосы, отсутствует. В связи с эти приведенные выше определения откоса являются условными.

Массив грунта при определенных условиях может потерять устойчивость и в результате этого перейти из состояния статического равновесия в состояние движения. Такое состояние грунтового массива называется оползнем. Принятая классификация оползней основана на схемах потери устойчивости грунтового массива. Различают следующие виды оползней: оползни вращения; оползни скольжения; оползни разжижения(рис. 6.1).

 

 

 

Рис. 6.1. Виды оползней:

а – оползень вращения, б – оползень скольжения (пристенный оползень); 1 – поверхности скольжения в теле оползня, 2 – стационарная плоскость скольжения на границе оползня
с подстилающим устойчивым массивом

Для оползней вращения характерна форма потери устойчивости грунтового массива в виде движения по криволинейной поверхности с вращением. Оползни скольжения называют также пристенными оползнями, так как их движение при нарушении равновесия происходит по заранее известным плоскостям, являющимся плоскостями контакта грунтового массива с устойчивыми горными породами. Оползнями разжижения называют грязевые потоки разжиженного водой грунта по выработанным руслам рек и тельвегам, например, селевые потоки. Механика грунтов изучает первые два типа оползней. Нарушение равновесия массива грунта может происходить внезапно со сползанием значительных масс грунта.

Основными причинами потери устойчивости откосов и склонов являются:

· устройство недопустимо крутого откоса или подрезка склона, находящегося в состоянии, близком к предельному;

· увеличение внешней нагрузки (возведение сооружений, складирование материалов на откосе или вблизи его бровки);

· изменение внутренних сил (увеличение удельного веса грунта при возрастании его влажности или, напротив, влияние взвешивающего давления воды на грунты);

· неправильное назначение расчетных характеристик прочности грунта или снижение его сопротивления сдвигу за счет, например, повышения влажности;

· проявление гидродинамического давления, сейсмических сил, различного рода динамических воздействий (движение транспорта, забивка свай и. т. п.).

Устойчивость откоса из идеально сыпучего грунта. Откос из идеально сыпучего грунта имеет свободную поверхность, наклоненную к горизонтальной плоскости под углом α (рис. 6.2).

Элементарная частица грунта на свободной поверхности испытывает силу тяжести G, которую можно разложить на нормальную N и касательную T к наклонной поверхности компоненты:

 

. (6.1)

 

Элементарная частица грунта удерживается на наклонной поверхности силой трения, равной произведению нормальной компоненты силы тяжести на коэффициент трения. Обозначим коэффициент трения как тангенс угла внутреннего трения φ. Тогда из уравнения равновесия проекций всех сил на наклонную плоскость получим:

 

(6.2)

 

(6.3)

 

Полученный результат можно обобщить в виде следующего определения: угол наклона к горизонтальной плоскости свободной поверхности откоса, сложенного идеально сыпучим грунтом, равен углу внутреннего трения этого грунта. Этот результат можно использовать в качестве теоретической основы экспериментального метода по определению угла внутреннего трения сыпучего грунта.

 

 


6.2. Инженерные методы расчета устойчивости откосов и склонов

 

В проектной практике применяются инженерные методы расчета устойчивости, содержащие различного рода упрощающие предположения. Наиболее распространенный из них – метод круглоцилиндрических поверхностей скольжения, относящий к схеме плоской задачи.

Этот метод был впервые применен К. Петерсоном в 1916 г. для расчета устойчивости откосов и долгое время назывался методом шведского геотехнического общества.

Рассмотрим широко используемую модификацию этого метода. Предположим, что потеря устойчивости откоса или склона, представленного на рис. 6.3, а, может произойти в результате вращения отсека грунтового массива относительно некоторого центра .

Поверхность скольжения в этом случае будет представлена дугой окружности с радиусом r и центром в точке . Смещающийся массив рассматривается как недеформируемый отсек, все точки которого участвуют в общем движении. Коэффициент устойчивости принимается в виде

, (6.3)

 

где и – моменты относительно центра вращения всех сил, соответственно удерживающих и смещающих отсек.

 

 

Рис. 6.3. Схема к расчету устойчивости откосов методом круглоцилиндрических поверхностей скольжения: а – расчетная схема; б – определение положения наиболее опасной поверхности скольжения; 1, 2, … – номера элементов

 

Для определения входящих в формулу (6.4) моментов отсек грунтового массива разбивается вертикальными линиями на отдельные элементы. Характер разбивки назначается с учетом неоднородности грунта отсека и профиля склона так, чтобы в пределах отрезка дуги скольжения основания каждого i-го элемента прочностные характеристики грунта j и с были постоянными. Вычисляются силы, действующие на каждый элемент: вес грунта в объеме элемента и равнодействующая нагрузки на его поверхность . При необходимости могут быть также учтены и другие воздействия (фильтрационные, сейсмические силы и т. д.). Равнодействующие сил считаются приложенными к основанию элемента и раскладываются на нормальную и касательную составляющие к дуге скольжения в точке их приложения. Тогда

 

; . (6.5)

 

Соответственно момент сил, вращающих отсек вокруг 0, определился как

 

, (6.6)

 

где п – число элементов в отсеке.

Принимается, что удерживающие силы в пределах основания каждого элемента обусловливаются сопротивлением сдвигу за счет внутреннего трения и сцепления грунта. Тогда с учетом выражения для закона кулона можно записать

 

, (6.7)

 

где – длина дуги основания i-го элемента, определяемая как . Здесь – ширина элемента).

Отсюда момент сил, удерживающих отсек, будет иметь вид

 

. (6.8)

 

Учитывая формулу (6.4), окончательно получим

 

. (6.9)

 

При устойчивость отсека массива грунта относительно выбранного центра вращения 0 считается обеспеченной. Основная сложность при практических расчетах заключается в том, что положение центра вращения 0 и выбор радиуса r, соответствующие наиболее опасному случаю, неизвестны. Поэтому обычно проводится серия таких расчетов при различных положениях центров вращения и значениях r. Чаще всего наиболее опасная поверхность скольжения проходит через нижнюю точку откоса или склона. Однако если в основании залегают слабые грунты с относительно низкими значениями прочностных характеристик j и с, то это условие может не выполняться.

Один из приемов нахождения наиболее опасного положения поверхности скольжения заключается в следующем. Задаваясь координатами центров вращения 01, 02, …, 0n на некоторой прямой, определяют коэффициенты устойчивости для соответствующих поверхностей скольжения и строят эпюру значений этих коэффициентов (рис. 6.3, б). Через точку 0min, соответствующую минимальному коэффициенту устойчивости, проводят по нормали второй отрезок прямой и, располагая на нем новые центры вращения , , …, , вновь оценивают минимальное значение коэффициента устойчивости. Тогда и определит положение наиболее опасной поверхности скольжения. При устойчивость откоса или склона будет обеспечена.

 

 


– Конец работы –

Эта тема принадлежит разделу:

МЕХАНИКА ГРУНТОВ

Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет... С А Пьянков...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Особенности деформирования различных типов грунтов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МЕХАНИКА ГРУНТОВ
  Учебное пособие для студентов высших учебных заведений, обучающихся по специальностям 27010265 «Промышленное и гражданское строительство» и 27010965 «Теплогазоснабжение и вентиляция

Пьянков, С. А., Азизов З. К.
П 87 Механика грунтов : учебное пособие / С. А. Пьянков, З. К. Азизов ; Ульян. гос. техн. ун-т. – Ульяновск : УлГТУ, 2008. – 97 с. ISBN 5-89146-700-0    

Выписка из ГОС ВПО
ОПД.Ф.07 Механика грунтов: состав, строение и состояние грунтов; физико-механические свойства грунтов основания; распределение напряжений в грунтовом массиве; расчет о

Образование грунтов (генезис).
Континентальные отложения: · элювиальные (форма зерен угловатая); · делювиальные (перемещенные атмосферными водами и силами тяжести, напластования н

Структура, текстура и структурные связи грунта.
Следует различать структуру грунта, т. е. взаимное расположение частиц грунта и характер связи между ними и текстуру грунта, т. е. сложение грунта в массиве. Под структуро

Состав грунтов.
Грунты состоят из: твердых частиц; воды в различных видах и состояниях (в том числе льда при нулевой или отрицательной температуре грунта); газов (в том числе и воздуха). Вода и газы наход

Свойства твердых частиц.
Твердая минеральная масса состоит из первичных зерен скелета грунта (обломков горных пород и минералов) и вторичных частиц, служащих цементирующим веществом грунта. С

Свойства воды.
Свойства всех разновидностей грунтов, особенно песчаных, пылеватых и глинистых, самым существенным образом зависят от состава и содержания в них воды. В грунте различают кристаллизационную, или хим

Свойства газа.
Содержание воды и газа в грунте зависит от объема его пор: чем больше поры заполнены водой, тем меньше в них содержится газов. В самых верхних слоях грунта газообразная составляющая представлена ат

Структурно-неустойчивые грунты
Структурно-неустойчивыми называют такие грунты, которые обладают способностью изменять свои структурные свойства под влиянием внешних воздействий с развитием значительных осадок, п

Мерзлые и вечномерзлые грунты.
Грунты всех видов относят к мерзлым грунтам, если они имеют отрицательную температуру и содержат в своем составе лед. Вечномерзлыми называют грунты, которые находятся в мерзлом состоянии н

Лёссовые грунты.
Лёссовые грунты по своей структуре и составу значительно отличаются от других видов грунтов. У лёссовых грунтов размер пор значительно превышает размер твердых частиц, такие грунты по-другому назыв

Слабые водонасыщенные грунты.
К слабым водонасыщенным грунтам относят илы, ленточные глины и другие виды глинистых грунтов, характерными особенностями которых являются их высокая пористость в природном состоянии, насыщенность в

Торфы и заторфованные грунты.
Торф – это органический грунт, образовавшийся в результате естественного отмирания и неполного разложения болотных остатков. Состав болотных остатков в них – не менее 50%. Песчаные пылеват

Основные расчетные модели грунтов
Требования к расчетным моделям Точность прогнозов в механике грунтов в большой степени определяется тем, с какой полнотой в уравнениях состояния отражаются особенности деформирования грунт

Основные характеристики физических свойств грунтов, отбор образцов
Физические свойства грунтов характеризуют их физическое состояние в условиях природного (ненарушенного) залегания. Исследование свойств грунтов предусматривает получение м

Условия работы грунтов в массиве. Основные законы и свойства, механические характеристики
Механическими называются те свойства грунтов, которые характеризуют их поведение под нагрузкой. Под действием передаваемых сооружением вертикальных или наклонных сил в массиве основ

Физические представления
Так как грунт состоит из твердых частиц и пор, которые частично или полностью заполнены водой, теоретически при его сжатии должны уменьшаться объемы всех трех компонентов – твердых частиц, воздуха

В полевых условиях с помощью штампов.
Выполняя отбор проб для испытания грунтов, мы нарушаем его структуру и, следовательно, нарушаем его свойства. Поэтому производят полевые испытание грунта штампами: большого и малого диаметра.

Закон сопротивления сдвигу для различных грунтов, характерные зависимости. Угол внутреннего трения и угол естественного откоса, трение и сцепление
Сдвиг – процесс изменения расположения частиц грунта под действием внешних сил. Грунты в основании сооружений, а также при неодинаковых отметках их поверхности испытывают

Предельное сопротивление грунтов сдвигу есть функция первой степени нормального напряжения.
  τ = σ · tgφ + c, (3.6)   где τ – сопротивление сдвигу; σ – нормальное напряжение (давление)

Коэффициент фильтрации
Водопроницаемость связана с уплотнением грунта, так как при уплотнении из грунта в первую очередь извлекается влага. В строительстве фильтрационные свойс

Влияние подземных вод на строительные свойства грунтов и на фундаменты
На различной глубине от поверхности земли встречаются грунты, пропитанные водой. Эти воды называются грунтовыми, а верхняя поверхность их – уровнем грунтовых вод.

Влияние грунтовых вод на устойчивость и прочность основания
Изменение уровня грунтовых вод после возведения сооружения может резко понизить прочность основания и вызвать серьезные деформации сооружения в следующих случаях: · при наличии в грунте ле

Агрессивность грунтовых вод
Грунтовые воды, способные разрушать цементные бетоны и растворы, называются агрессивными. Агрессивность их зависит от химического состава растворенных в них солей и кислот. Эти вещества попа

Влияние физических и механических характеристик на строительные свойства грунтов
Характерные свойства грунтов длительное время воспринимать внешние нагрузки при деформациях оснований, не препятствующих нормальной эксплуатации зданий и сооружений, называют их строительными св

Фазы напряженно-деформированного состояния грунта
Фазы напряженно-деформированного состояния грунтаизучаются с целью установления расчетных моделей деформирования грунтового основания, приемлемых для инженерных расчетов его прочности, устойчивости

Доказательство применимости теории упругости к грунтам (постулаты теории упругости).
1. Деформации пропорциональны напряжениям     Рис. 4.2. За

Определение напряжений в массиве грунта при действии единичной вертикальной силы N, приложенной к границе грунтового основания.
Решение задачи Буссинеска. Основано на следующих гипотезах (впоследствии подтвержденных точными решениями): а) нормальные напряжения на площадках, касательных к сферическо

Определение напряженийσzпри действии местного равномерно распределенного давления (метод угловых точек).
Если закон распределения давления по поверхности изотропного линейно-деформируемого полупространства известен, то элементарное суммирование можно заменить интегрированием.

Линейные и нелинейные деформации.
В общем случае грунтам свойственна нелинейная деформируемость, причем в пределах фаз I и II, в некотором начальном интервале изменения напряжений она достаточно близка к линейной.

Метод послойного суммирования
В большинстве практических случаев основание сложено по глубине разнородными грунтами, представленными в материалах инженерно-геологических изысканий инженерно-геологическими элементами (ИГЭ). Мето

Порядок расчета
1. Строим расчетную схему. 2. Разбиваем грунтовый массив ниже подошвы фундамента шириной b на элементарные слои, исходя из следующих условий: · мощность любого элементарног

Допущения при расчете по этому методу
1. Линейная зависимость между напряжениями и деформациями. 2. Осадки рассматриваются, исходя из maxPz – под центром фундамента. 3. Не учитывается, как правило, с

Затухание осадки во времени
Затухание осадки грунтов во времени (их консолидация) является сложным процессом, на который оказывают влияние водопроницаемость, структура, поровое давление, ползучесть скелета грунта, сжимаемость

Реология и нелинейная механика грунтов
  Реология как наука, изучающая вопросы течения материалов, имеет три основных направления исследований: медленно развивающихся во времени деформаций – деформаций ползучести; расслабл

Длительная прочность грунта и релаксация напряжений
Если образец грунта подвергать деформациям сдвига, осевого сжатия или растяжения при различных нагрузках, то можно отметить, что чем большая нагрузка приложена к образцу, тем скорее наступает стади

Деформации ползучести грунта при уплотнении
Если деформацию образца водонасыщенного грунта в одометре или осадку слоя грунта без возможности бокового расширения изобразить во времени кривой в полулогарифмической системе координат, то она буд

Вопросы нелинейной механики грунтов
Ранее отмечалось, что близкая к линейной зависимость при небольших давлениях наблюдается в пределах фазы упругих деформаций и фазы уплотнения и местных сдвигов. Если давление по подошве жестких фун

Виды неравномерных осадок сооружений
  Причины развития неравномерных осадок в сооружении. Равномерная осадка сооружений обычно никаких трудностей не вызывает. (Известны отечественные с

Причины развития неравномерных осадок выпирания
Данные осадки возникают за счет появления зон пластических деформаций оснований и выдавливания грунта в стороны (рис. 5.25). При давлении Р = R глубина зон п

Причины развития неравномерных осадок разуплотнения
Sразупл. – развивается под действием нагрузки, не превышающей величину природной, т. е. нагрузки, равной весу вынутого грунта при откопке котлована. Эт

Причины развития неравномерных осадок расструктуривания
Наибольшее влияние на развитие общих осадок могут оказать осадки расструктуривания, Sрасстр., вызванные нарушением структуры грунтов основания при отрывке котлованов и устройстве

Причины развития неравномерных осадок в период эксплуатации
1. Уплотнение грунтов после начала эксплуатации Sэкспл. сооружения: · деформации ползучести грунта и процесс фильтрационной консолидации;

Мероприятия по повышению устойчивости сооружений, откосов и склонов
Первое основное направление – это уменьшение суммарных активных воздействий на сооружение, способных вызвать нарушение их устойчивости. Примерами таких мероприятий в рассмотренных на рис.

Общие положения.
Ограждающие конструкции предназначены для того, чтобы удерживать от обрушения находящийся за ними грунтовый массив. Характерным примером ограждающей конструкции является подпорная стенка – к

Определение активного давления на вертикальную гладкую стенку при горизонтальной поверхности засыпки.
Рассмотрим простейший случай, когда засыпка представлена идеально сыпучим грунтом (рис. 6.8). Поскольку принято, что стенка имеет абсолютно гладкую грань, т. е. трение грунта о стенку отсутствует (

Учет нагрузки на поверхности засыпки.
При наличии на поверхности сплошной равномерно распределенной нагрузки интенсивностью (рис. 6.9, а) выражение (6

Учет наклона, шероховатости задней грани стенки и наклона поверхности засыпки.
Этот случай является общим. Рассмотрим предельное равновесие призмы обрушения ОАВ согласно расчетной схеме, представленной на рис. 6.9, а. Здесь

Определение активного давления при ломаной форме грани стенки и неоднородных грунтах засыпки.
В этом случае стенка и грунты засыпки разделяются по горизонтали на отдельные участки, в пределах которых угол наклона стенки и физико-механические характеристики грунтов (

Определение пассивного давления.
Как указывалось выше, пассивное давление возникает при перемещении стенки в сторону грунта засыпки. Характерный пример такого случая показан на рис. 6.12, а. Под действием активного давления справа

ЗАКЛЮЧЕНИЕ
Механика грунтов – научная дисциплина, изучающая напряженно-деформированное состояние грунтов, условия их прочности, давление на ограждения, устойчивость грунтовых массивов и др. В механике грунтов

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги