рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Природа прочности горных пород (грунтов)

Природа прочности горных пород (грунтов) - раздел Механика, Механика грунтов курс лекций Под Действием Внешней Нагрузки В Отдельных Точках (Областях) Грунта Эффективн...

Под действием внешней нагрузки в отдельных точках (областях) грунта эффективные напряжения могут превзойти внутренние связи между частицами грунта, при этом возникнут сдвиги одних частиц или агрегатов их по другим и может нарушиться сплошность грунта в некоторых областях, т. е. Прочность грунта будет превзойдена.

Внутренние связи в различных породах зависят от свойств горных пород и грунтов (сил внутреннего трения, структурного оцепления Сс и связность Σω).

В скальных породах, подобных граниту или известнякам, превалируют жесткие необратимые связи структурного сцепления Сс.

В сыпучих, несвязных грунтах наибольшее значение приобретают силы внутреннего трения.

В глинистых грунтах наибольшее значение имеет связность Σω. При изменении условий (обезвоживания) могут проявиться силы внутреннего трения и структурного сцепления (компоненты сопротивляемости сдвигу).

Природа внутреннего трения в грунтах

Природа сил внутреннего трения в рыхлых сыпучих грунтах (песках) зависит от шероховатости частиц сыпучих пород. При воздействии на грунт сжимающих нормальных напряжений между частицами возникают силы трения, проявляющиеся при взаимном их смещении.

Удельная сила трения Sтр (её размерность кгс/см2, мПа) определяется по формуле:

Sтр=p*f (3.15)

где f – коэффициент трения, характеризующий шероховатость частиц песка.

Коэффициент трения можно выразить через трения φ(f=tgφ), тогда

Sтр=p*tgφ (3.16)

Угол внутреннего трения зернистых пород зависит от плотности их сложения, а показателем плотности является пористость n, выражаемая в процентах или в долях единицы. В этом случае

Sтр=p*tgφn

Для глинистых грунтов коэффициент f и угол внутреннего трения φ зависят от степени увлажнения породы (влажности). Учитывая это

Sтр=p*tgφω

Природа структурного сцепления Сс. Структурное сцепление придает породе жесткость и твердость. Этот вид сцепления объясняется наличием в породе жестких связей между слагающими частицами. Структурное сцепление особенно характерно для скальных пород, определяя их прочность.

В глинистых грунтах структурное сцепление выражено значительно менее ясно. В сыпучих грунтах (песок, щебень) структурное сцепление отсутствует. В плотных песках, песчано-гравелистых и галечниковых грунтах возникает некоторое взаимное зацепление зерен.

- проявление структурного сцепления Сс.

Структурные связи имеют упругий характер определяющие степень деформируемости пород, их уплотняемость.

При разрушении структуры породы или грунта, структурные связи безвозвратно нарушаются и имеют необратимый характер.

Структурное сцепление может нарушиться:

- при чрезмерной нагрузке (раздавливание структурного скелета);

- при необратимом сдвиге;

- при чрезмерном увлажнении.

В последнем случае происходит пучение (набухание) глинистых грунтов. Природа связности глинистых грунтов

Связность Σω характерна для глинистых пород и определяет их прочность.

В зависимости от степени увлажнения, глинистые породы могут многократно переходить из твердого состояния в полуразжиженное и наоборот, что можно наблюдать во время распутицы. На этом основана технология прессования сырцовых кирпичей. Пластические свойства глины известны скульпторам.

Таким образом, связность Σω в отличие от структурного сцепления Сс имеют обратимый характер. Это свойство определяется их водно-коллоидной природой.

Свойство глинистых грунтов пластически деформироваться и подвергаться пучению объясняются содержанием в породе каолинита Al2O3*2SiO2*2H2O, монтмориллонита Al2O3*4SiO2*nH2O.

Внутреннее сопротивление, препятствующее сдвигу частиц или агрегатов частиц слагается из внутреннего трения, сил сцепления, которые в свою очередь зависят от величины уплотняющих давлений, возникающих в точках и на площадках контактов частиц.

Показатели сопротивления сдвигу — это основные показатели сопротивления тел внешним силам.

Опытное определение сопротивления грунта сдвигу производится различными методами: по результатам прямого плоскостного среза, простого одноосного сжатия, трехосного сжатия, среза по цилиндрической поверхности, вдавливания и др.

указанными методами определяется максимальное (предельное) сопротивление грунта сдвигу, когда исчерпывается полностью сопротивление грунта сдвигающим усилиям.

– Конец работы –

Эта тема принадлежит разделу:

Механика грунтов курс лекций

Государственное образовательное учреждение профессионального высшего образования... Ростовский Государственный университет путей сообщения...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Природа прочности горных пород (грунтов)

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные задачи механики грунтов
Многообразие проблем, рассматриваемых в механике грунтов, можно свести к следующим основным задачам: 1. Исследование физико-механических свойств структурно-неустойчивых грунтов, т.е. проса

Грунт как многокомпанентная среда
Грунты состоят из отдельных минеральных частиц различной крупности и состава. однако минеральные зерна не занимают всего объёма грунта, между частицами остаются пустоты, которые в совокупности обра

Твердая фаза. Определение вида несвязных грунтов
Свойства твердой фазы (скелета грунта) зависят от гранулометрического, минералогического состава и формы частиц. Гранулометрический состав в природных грунтах определяется размером

Жидкая фаза
Наличие жидкой фазы оказывает большое, часто определяющее влияние на свойства грунтов. Поровая жидкость преимущественно представлена водой. В зависимости от интенсивности электромалекулярных сил по

Газообразная фаза
Поровой газ подразделяют на свободный, защемлённый и растворённый. Свободный газ через поровое пространство сообщается с атмосферой и не оказывает существенного влияния на механичес

Фазовые характеристики грунтов
Представляя трехкомпонентную или трехфазную среду, грунт имеет общую массу — m, массу частиц или массу скелета грунта — ms, массу воды — mω, общий объем грунта — V, объем

Основные фазовые характеристики и методы их определения
К основным фазовым характеристикам относятся: плотность грунта ρ, плотность частиц (скелета) грунта ρs, естественная (природная) влажность W. Плотность грунта ρ

Производные фазовые характеристики
Производные фазовые характеристики рассчитываются по основным и служат для детальной характеристики и классификации грунтов. К ним относятся: плотность сухого грунта ρd, пористость

Фильтрация воды в грунтах. Закон Дарси.
Важной особенностью грунтов, как дисперсных (мелкораздробленных) пористых тел, является их водонепроницаемость, т.е. способность фильтровать воду. В грунтах различают связанную и св

Начальный гидравлический градиент
Закон Дарси выполняется преимущественно для песков (рис 2.3.). в глинистых грунтах фильтрация может вообще не иметь место. Движение воды в глинах начинается лишь после преодоления некоторо

Гидродинамическое давление. Суффозия и кальматаж.
Гидродинамическим давлением называется давление движущейся воды на скелет грунта. По величине гидродинамическое давление равно сопротивлению движению воды, а по направлению — противоположно ему. Ги

Деформационные характеристики
  Деформационные свойства грунтов необходимы при изучении закономерностей, связывающих деформации с напряжениями Изучение деформируемости обычных материалов производится при

Предельное сопротивление грунтов сдвигу. Закон Кулона.
Для изучения предельного сопротивления грунтов сдвигу, разработаны специальные приборы и методики испытаний. Наиболее распространенными в настоящее время являются сдвиговые приборы.

Испытание прочности грунтов по методу шарового штампа
Этот метод применяется для исследования дисперсных связных и вязких грунтов как в полевых, так и в лабораторных условиях. Метод основан на измерении осадки штампа сферической формы при некоторой по

Испытания грунтов на сдвиг при простом и трехосном сжатии
Испытание на простое (одноосное) сжатие возможно только для тугопластичных и твердых глинистых грунтов, из которых могут быть вырезаны образцы цилиндрической или призматической формы.

Фазы работы грунта в основаниях сооружений
Анализируя закономерности нарастания внешних воздействий (осадок штампа с ростом нагрузки), Н.М. Герсеванов в 1930году выделил три участка графика, соответствующие трем фазам работы грунта (рис 11.

Распределение напряжений в основании сооружений от сосредоточенной силы.
Существует два решения задачи для определения напряжений в линейно-деформируемом основании: Буссинеска и Миндлина. Решение Буссинеска. При приложении вертикальной сосредоточенной си

Определение напряжений в основании сооружений от нагрузки, распределенной по площадке ограниченных размеров (прямоугольнику). Методом угловых точек.
Напряжение в любой точке, лежащей по вертикали под углом загруженного прямоугольника является сжимающим напряжением Ϭz, а точки, лежащие под центром тяжести загруженного пря

Особенности оценки напряженного состояния оснований железнодорожных насыпей.
Напряженное состояние основания железнодорожных насыпей может быть определенно различными способами. Если насыпь имеет относительно малую нагрузочную площадку и нагрузка от неё на основание может б

Влияние неоднородности основания на распределение напряжений.
При наличии в основании слоев с существенно разной сжимаемостью (различающейся в несколько раз) характер распределения напряжений изменяются. 1) при наличии жесткого подстилающего слоя нап

Распределение напряжений от собственного веса грунта.
Важным фактором для оценки работы грунтов основания является напряженное состояние, возникающее от их собственного веса. При горизонтальной поверхности грунта вертикальное напряжение

Понятие о прочности устойчивости оснований.
Известно, что работа основания сооружения характеризуется темя фазами работы грунта: - I фазой уплотнения; - II фазой локального нарушения прочности; - III фазой нарушени

Оценка прочности грунтов основания без учета нормальных напряжений.
Прочность грунта основания без учета нормальных напряжений оценивается при сложении основания грунтами, сопротивляемость сдвигу которых не зависит от нормальных напряжений. К таким грунтам относят

Оценка прочности грунтов с учетом нормальных напряжений
С учетом нормальных напряжений, прочность грунтов оценивается в случае залегания в основании сыпучих грунтов (у которых Spn=p*tgφn+cn, или Spn=p*tg&

Первая критическая нагрузка. Расчетное сопротивление грунта.
Первая критическая нагрузка для связных грунтов Нагрузка, являющаяся границей между I и II фазами работы грунта основания (первая критическая нагрузка), соответствует появлению пред

Вторая критическая нагрузка по условию обеспечения общей устойчивости основания сооружений.
Переходу от II к III фазе работы грунта основания соответствуют формированию уплотненного грунтового ядра и поверхностей скольжения в основании, в результате чего сооружение приобретает неравномерн

Виды деформации грунтов и причины их обусловливающие.
Определение деформаций грунтов под действием внешних сил имеет огромное значение для практики проектирования фундаментов сооружений. Факторами, определяющими долговечность сооружений, явля

Упругие деформации грунтов и методы их определения.
Грунты, представляющие собой сложные дисперсные природные образования, можно рассматривать как упругие тела лишь при определенных условиях. При действии местной нагрузки (большей структурн

Определение конечной осадки сооружения
Исходные положения для вычисления осадки сооружения. В зависимости от геологического строения грунтового основания применяют одну из следующих расчетных моделей: - при боле

Определение хода осадок во времени
Достижение конечной осадки может быть растянуто во времени на десятки, сотни лет. Длительность хода осадки связано со многими факторами и прежде всего с водопроницаемостью водонасыщенных грунтов.

Учет влияния на осадку сооружения соседних фундаментов.
При возведении сооружений в условиях существующей застройки осадки сооружений старой застройки возобновляется. Это происходит в связи с повышением сжимающих напряжений в толще основания от нагрузки

Виды сопротивления основания.
Если увеличить общую нагрузку Р на фундамент, его осадка S будет возрастать. График зависимости осадки (рис 6.1) от равномерного давления Р на основание называется кривой осадки: Р=Р/F,

Расчет несущей способности основания.
Общую максимальную нагрузку от фундамента, которую может выдержать основание без разрушения, называют его несущей способностью (Ф). несущая способность основания зависит от размеров его площ

Грунтовые откосы
Грунтовые откосы являются наиболее сложными искусственно-естественными образованиями, которые нередко обрушаются и приводят к авариям. При проектировании железнодорожной линии важно учитывать не то

Сопротивление грунта сдвигу.
Грунт обладает на откосе значительной потенциальной энергией. Она переходит в кинетическую энергию движения грунта под действием многих факторов, главным из которых является предельное равновесие.

Временные откосы
Откосы котлованов и траншей имеют временное значение и находятся в состоянии непрерывного медленного движения грунта на склонах, которые делятся на сезонные, захватывающие поверхностные слои грунта

Методы расчета устойчивости откосов.
На практике в нашей стране чаще всего применяют метод круглоцилиндрической поверхности скольжения. Наиболее широко применяемые методы расчета устойчивости склонов (откосов) основаны на так называем

Общее понятие.
Скальные откосы являются непременной конструкцией железнодорожного пути в горных странах. От их устойчивости зависит нормальное функционирование железной дороги. Устойчивостью скальных отк

Подпорные стены.
  7.3.1. Общие понятия. Типы подпорных стенок Подпорные стенки представляют собой искусственные инженерные сооружения, позволяющие сопрягать различные

Оценка устойчивости подпорной стенки
Оценка устойчивости подпорной стены включает в себя определение давления грунта, проверку стены на прочность и устойчивость против опрокидывания и плоского сдвига. (М.Н. Гольдштейн) Уст

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги