рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Механизированная и автоматическая дуговая сварка

Механизированная и автоматическая дуговая сварка - раздел Механика, ПРИКЛАДНАЯ МЕХАНИКА Механизированная (Или Полуавтоматическая) Сварка – Это Дугов...

Механизированная (или полуавтоматическая) сварка – это дуговая сварка, при которой подача плавящегося электрода и перемещение дуги относительно изделия выполняются с использованием механизмов. С ее помощью выполняют любые сварные соединения: стыковые, угловые, тавровые, нахлесточные и др.

Автоматической называют дуговую сварку, при которой возбуждение дуги, подача электрода и перемещение дуги относительно изделия выполняются механизмами без непосредственного участия человека, в том числе и по заданной программе.

На рисунке 17.3 приведена схема образования сварного соединения при рассматриваемых видах сварки. На ней обозначены: 1 – электродная проволока; 2 – сопло (насадка); 3 – токоподводящий наконечник; 4 – газ (флюс); 5 – дуга; 6 – затвердевший шлак; 7 – шов; 8 – сварочная ванна; 9 – основной (свариваемый) металл.

При механизированной и автоматической сварке образование сварного соединения происходит следующим образом. Теплотой дуги электрод и основной металл расплавляются, капли расплавленного металла с конца электрода попадают в сварочную ванну, где перемешиваются с расплавленным основным металлом. Жидкий металл сварочной ванны подвергается металлургической обработке за счет использова

 

ния газа или флюса (в этом состоит отличие от ручной дуговой сварки). То есть он раскисляется и легируется. При передвижении дуги вдоль свариваемых кромок перемещается и сварочная ванна. В ее хвостовой части металл охлаждается, кристаллизуется и образуется сварное соединение.

Различают следующие виды механизированной (автоматической) сварки.

1. В углекислом газе и его смесях с кислородом сваривают низко- и среднеуглеродистые, а также низколегированные стали. В углекислом газе сваривают стали толщиной до 40, а в смесях газов – до 80 мм. Защита смесью газов улучшает технологические и металлургические характеристики процесса сварки . Расход углекислого газа зависит от мощности дуги, вылета электрода, воздушных потоков в помещении, где выполняется сварка.

2. В инертных газах (аргоне или гелии) можно сваривать алюминий, магний, титан и их сплавы. Свариваются низко- и среднеуглеродистые, низко-, средне- и высоколегированные конструкционные стали. Использование названных газов целесообразно, так как аргон имеет плотность почти в 1,5 раза большую, чем воздух, а гелий – значительно меньшую, чем воздух и аргон. Кроме того аргон и гелий не образуют химических соединений с металлами, поэтому в этих газах можно сваривать любые металлы и сплавы.

3.Под флюсом свариваются низко- и среднеуглеродистые, низко-, средне- и высоколегированные стали, чугун, титан, медь, алюминий и их сплавы.

Флюс – порошкообразный материал, который при сварке выполняет такие же функции, как покрытие электрода при ручной дуговой сварке. Основой флюса является силикат марганца SiO2·MnO. Флюсы в зависимости от способа изготовления бывают двух видов: плавленые и неплавленые. Плавленые получают сплавлением исходных компонентов в печах. К неплавленым относятся керамические и спеченные флюсы. Керамические флюсы изготавливаются из порошкообразных материалов, соединяемых в зерна клеящими веществами, например жидким стеклом. Спеченные флюсы получают спеканием исходных порошкообразных материалов при высоких температурах с последующим дроблением частиц до заданных размеров.

Во время сварки часть флюса расплавляется, а после затвердения образует шлаковую корку. Нерасплавленная часть флюса после просева используется повторно.

4. Порошковыми проволоками сваривают низкоуглеродистые и низколегированные стали, а специальными порошковыми проволоками – некоторые высоколегированные,. в частности, нержавеющие стали, сплавы меди. Ими можно сваривать стали толщиной до 40 мм. Порошковые проволоки представляют собой металлическую оболочку, заполненную шихтой. Их некоторые поперечные сечения показаны на рисунке 17.4: a) трубчатое, б) трубчатое с захлёсткой, в) и г) – сложные сечения.

Наиболее простая по конструкции – порошковая проволока трубчатого поперечного сечения. Для увеличения жесткости проволоки, а также изменения соотношения компонентов материалов оболочки и шихты применяются проволоки, у которых во внутреннюю полость отогнуты кромки металлической оболочки. Состав металла оболочки выбирается в зависимости от свариваемого металла. В шихту порошковой проволоки вводят компоненты, которые могут выполнять следующие функции:

– защиту расплавленного металла от взаимодействия с кислородом и азотом воздуха;

– раскисление и легирование расплавленного металла;

– стабилизацию горения дуги;

– улучшение формирования шва.

Применяют три вида порошковых электродных проволок: самозащитные, для сварки в углекислом газе, для сварки под флюсом Наиболее высокой технологичностью отличается сварка самозащитными порошковыми проволоками, так как отпадает необходимость в применении защитных газов и флюсов.

Сварочное оборудование. Для механизированной и автоматической сварки применяются соответственно полуавтоматы и автоматы, комплектуемые источниками тока для питания дуги.

Автоматы выполняют следующие функции: возбуждение дуги и автоматическое регулирование процесса сварки; механизированную подачу электродной проволоки со скоростью, равной скорости плавления; механизированное передвижение дуги относительно свариваемых кромок; подачу флюса или газа в зону дуги.

Автомат состоит из двух основных устройств: трактора или самоходной головки и аппаратуры управления. Автоматы для сварки в защитных газах, кроме того, имеют газовую аппаратуру, которая включает газовый редуктор, баллон с углекислотой, подогреватель газа и осушитель, предназначенный для очистки газа от влаги.

Трактор выполняет подачу электродной проволоки, а также подводит ток к месту сварки. В механизме подачи автоматов и полуавтоматов для сварки электродными проволоками обычно имеются два подающих ролика, один из которых ведущий, а другой прижимной, между этими роликами зажимается электродная проволока. Она сматывается с кассеты, проталкивается через шланг и через токопроводящее устройство подается в зону дуги.

У трактора для сварки под флюсом имеются системы подачи и уборки флюса, а у трактора для сварки в защитных газах – специальная газоэлектрическая горелка, которая предназначена для направления в зону электродной проволоки, подвода к ней сварочного тока и подачи защитного газа в зону дуги. При сварке под флюсом вместо горелки применяется держатель, на котором закреплен бункер для подачи флюса.

Применение механизированной и автоматической дуговой сварки. Механизированной сваркой можно накладывать не только прямолинейные, но и криволинейные швы, а также швы небольшой длины в труднодоступных местах. Сваривают металл малой и средней толщины. Эти виды сварки применяются при различных работах, в том числе и ремонтных. При серийном производстве прямолинейные и кольцевые сварные швы длиной более 300 –500 мм целесообразно выполнять автоматической сваркой.

В транспортном машиностроении механизированная и автоматическая дуговая сварка применяются при производстве вагонов и локомотивов. Хребтовые балки сваривают на поточных механизированных линиях автоматами под флюсом. Рамы вагонов сваривают автоматами сваркой в углекислом газе на специально оборудованных кантователях. В тракторном и сельскохозяйственном машиностроении сваркой в углекислом газе выполняется до 75 % всех сварочных работ.

Автоматическая сварка под флюсом и в углекислом газе широко применяются в трубном производстве для изготовления прямошовных и спиралешовных труб большого диаметра.

Механизированная сварка под флюсом, в углекислом газе и порошковыми проволоками широко применяется при строительстве доменных печей, резервуаров для хранения нефтепродуктов, при строительстве мостов, в судостроении и т. д.

– Конец работы –

Эта тема принадлежит разделу:

ПРИКЛАДНАЯ МЕХАНИКА

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТРАНСПОРТА... Кафедра Техническая физика и теоретическая механика...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Механизированная и автоматическая дуговая сварка

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПРИКЛАДНАЯ МЕХАНИКА
Часть 1   Гомель 1999 Рекомендовано методической комиссией механического факультета в качестве учебного пособия для студентов втузов

Краткие сведения о развитии прикладной механики
Прикладная механика как наука о машинах и других конструкциях выделилась из теоретической механики в начале XIX века. Ее развитие было связано с расцветом машинного способа производства и бурным ро

ОБЩИЕ ПРИНЦИПЫ ПРОЕКТИРОВАНИЯ, КОНСТРУИРОВАНИЯ И РАСЧЕТА МАШИН, МЕХАНИЗМОВ И СООРУЖЕНИЙ
2.1 Основные характеристики и требования, предъявляемые к машинам и механизмам Современное производство немыслимо без всевозможных высокоэффективных машин. Благодаря их

Проектирование и конструирование машин
Конструирование машин – творческий процесс со свойственными ему закономерностями построения и развития моделей. Основные особенности этого процесса состоят в многовариантности подходов, необходимос

Материалы, применяемые в производстве
Расчет и проектирование деталей начинается с выбора материала и назначения термической обработки его, которые определяются конструктивными, технологическими и экономическими соображениями. Для изго

Виды термообработки и упрочнения материалов
Различают термическую и химико-термическую обработку материалов. Термическая обработка. Для придания стали определенных свойств (высокой прочности, пластичности и т. д.) в

НАУКА О СОПРОТИВЛЕНИИ МАТЕРИАЛОВ
4.1 Понятие о прочности, жёсткости и устойчивости конструкции Сопротивление материалов – наука о прочности и надежности элементов конструкции. Она позволяет инженеру подоб

Допущения, применяемые в курсе сопротивления материалов
Из-за сложности задач расчета элементов конструкций в сопротивлении материалов принимается ряд допущений, касающихся свойств материалов, нагрузок, а также характера взаимодействия детали и нагрузок

Основные виды деформации
Деформацией называется изменение первоначальных размеров и форм тела под действием внешних нагрузок. Изменение линейных размеров тела или его частей называется линейной дефо

Внешние и внутренние силы
При работе сооружений, машин и механизмов их части воспринимают внешние нагрузки как результат действия одного тела на другое. В курсе теоретической механики рассматривается подробная классификация

Метод сечений
Для определения и последующего вычисления дополнительных сил в любом сечении бруса применим метод сечений. Суть метода сечений заключается в том, что брус мысленно рассекают поперек на две части и

При деформации растяжения (сжатия) и кручения
Под эпюрами внутренних силовых факторов понимают графики (диаграммы), показывающие изменение данного внутреннего усилия при переходе от сечения к сечению. Внутренняя сила либо моме

Правило знаков.
Ординату эпюры будем считать положительной, если равнодействующая внешних сил F растягивает брус и на

Правило знаков.
Крутящий момент будем считать положительным, если, идя слева или справа, он вращает вал против хода часовой

Эпюры внутренних силовых факторов при деформации изгиба
При деформации изгиба в рассматриваемом сечении бруса возникают поперечная сила и изгибающий момент. Поэтому для каждой балки строят две эпюры: Q и

Дифференциальная зависимость между поперечной силой, изгибающим моментом и равномерно распределенной нагрузкой
Между изгибающим моментом, поперечной силой и интенсивностью распределенной нагрузки легко установить определенную зависимость. Рассмотрим балку, нагруженную произвольной нагрузкой (рисунок 5.10).

Внешние и внутренние силы
При работе сооружений, машин и механизмов их части воспринимают внешние нагрузки как результат действия одного тела на другое. В курсе теоретической механики рассматривается подробная классификация

Метод сечений
Для определения и последующего вычисления дополнительных сил в любом сечении бруса применим метод сечений. Суть метода сечений заключается в том, что брус мысленно рассекают поперек на две части и

При деформации растяжения (сжатия) и кручения
Под эпюрами внутренних силовых факторов понимают графики (диаграммы), показывающие изменение данного внутреннего усилия при переходе от сечения к сечению. Внутренняя сила либо моме

Правило знаков.
Ординату эпюры будем считать положительной, если равнодействующая внешних сил F растягивает брус и на

Правило знаков.
Крутящий момент будем считать положительным, если, идя слева или справа, он вращает вал против хода часовой

Эпюры внутренних силовых факторов при деформации изгиба
При деформации изгиба в рассматриваемом сечении бруса возникают поперечная сила и изгибающий момент. Поэтому для каждой балки строят две эпюры: Q и

Дифференциальная зависимость между поперечной силой, изгибающим моментом и равномерно распределенной нагрузкой
Между изгибающим моментом, поперечной силой и интенсивностью распределенной нагрузки легко установить определенную зависимость. Рассмотрим балку, нагруженную произвольной нагрузкой (рисунок 5.10).

Продольная и поперечная деформации при растяжении
Под центральным растяжением (сжатием) понимают такой вид нагружения внешними продольными силами, при которых равнодействующая этих сил проходит через центр тяжести бруса. Рассмотрим брус, растянуты

Закон Гука. Модуль упругости материала
Силовые факторы и деформации, возникающие в брусе, тесно связаны между собой. Эта связь между нагрузкой и деформацией была сформулирована впервые Робертом Гуком в 1678 году. При растяжении или сжат

Условия прочности и жесткости при растяжении (сжатии)
Определив напряжение в наиболее нагруженном (опасном) сечении растянутого (сжатого) бруса по формуле и устан

Назначение и виды испытаний
Для изучения свойств материалов и установления значения предельных напряжений (соответствующих разрушению или пластическим деформациям) производят испытание образцов материалов при различных видах

Пластичность и хрупкость материалов
Кроме предела текучести и предела прочности

Диаграммы сжатия
Сравнительные испытания сталей на растяжение и сжатие показали, что зависимость между напряжениями и деформациями получаются приблизительно одинаковыми. Поэтому их испытывают преимущественно на рас

Понятие о сдвиге (срезе). Закон Гука при сдвиге
На сдвиг работает значительное число деталей конструкций. Простейшими примерами подобных деталей являются болтовые и заклепочные. Заклепки во многих случаях уже вытеснены сваркой, однако они имеют

Допускаемые напряжения и условие прочности при сдвиге
Вопрос выбора допускаемого напряжения при сдвиге (срезе) сложнее, чем при растяжении и сжатии. При выборе допускаемого напряжения исходят из предела прочности (для хрупких материалов). Однако опред

Деформация смятия. Расчеты на прочность
Деформация сдвига часто сопровождается смятием, когда значительная сжимающая сила действует на сравнительно небольшом участке. При срезе крепежных деталей деформации смятия подвергается ре

Понятие о сдвиге (срезе). Закон Гука при сдвиге
На сдвиг работает значительное число деталей конструкций. Простейшими примерами подобных деталей являются болтовые и заклепочные. Заклепки во многих случаях уже вытеснены сваркой, однако они имеют

Допускаемые напряжения и условие прочности при сдвиге
Вопрос выбора допускаемого напряжения при сдвиге (срезе) сложнее, чем при растяжении и сжатии. При выборе допускаемого напряжения исходят из предела прочности (для хрупких материалов). Однако опред

Деформация смятия. Расчеты на прочность
Деформация сдвига часто сопровождается смятием, когда значительная сжимающая сила действует на сравнительно небольшом участке. При срезе крепежных деталей деформации смятия подвергается ре

Геометрические характеристики сечений
Сопротивление бруса различным деформациям зависит не только от размеров и формы его поперечного сечения, но и от расположения этого сечения по отношению к направлению действия нагрузки. К основным

Статический момент площади сечения
Выделим из сечения бесконечно малую площадь dА; координаты которой x и y(рисунок 10.1).

Моменты инерции сечений
Различают осевые, полярные и центробежные моменты инерции. Осевой момент инерции площади представляет собой интеграл от

Радиус инерции и момент сопротивления сечения
Введем еще одну геометрическую характеристику сечения – радиус инерции, связывающую момент инерции фигуры J c ее площадью А:

Прямоугольник.
Осевой момент инерции определяется по формуле

Сечение в форме кольца.
Найдем моменты инерции кольцевого сечения: где

Определение моментов инерции сложных сечений
В инженерной практике часто применяются поперечные сечения сложной конфигурации. Для вычисления моментов инерции сложной фигуры ее разбивают на ряд простых, моменты инерций которых определить легко

Определение напряжений и углов закручивания при кручении
Чтобы найти напряжения, вызываемые в сечении крутящим моментом, воспользуемся основным методом решения задач сопротивления материалов – методом сечений. Рассмотрим участок вала, изображённ

А) Определение касательных напряжений.
Согласно закону Гука при сдвиге касательные напряжения в сечении радиуса

Б) Определение деформаций при кручении.
Из уравнения (11.5) находим угол закручивания (11.8) Проинтегрируем выражение (11.8.) по

Условия прочности и жесткости при кручении
Условие прочности вала, испытывающего деформацию кручения, определяется из условий работы наиболее нагруженного слоя, находящегося на его поверхности:

Потенциальная энергия при кручении
При кручении внешние моменты, приложенные к валу, совершают работу вследствие поворота сечений, к которым они приложены. Эта работа расходуется на создание запаса потенциальной энергии деформации,

Расчет винтовых цилиндрических пружин
Во многих механизмах и машинах, например в рессорах вагонов и автомобилей, применяют винтовые пружины. При проектировании таких пружин необходимо уметь вычислять наибольшие напряжения (для проверки

Поперечный и чистый изгиб
Под изгибомпонимают такой вид деформации бруса, при котором его ось изменяет свое положение в пространстве. При этом его поперечные сечения совершают поступательное и угловое перем

Определение нормальных напряжений при плоском изгибе
Рассмотрим балку, испытывающую деформацию чистого изгиба. При таком виде деформации ее сечения относительно друг друга перемещаются только вдоль оси ОZ (рисунок 12.3). &nb

Определение касательных напряжений при плоском изгибе
Наличие поперечной силы в сечениях балки при изгибе вызывает возникновение касательных напряжений. Для определения касательных напряжений рассмотрим балку прямоугольного поперечного сечения со стор

Условия прочности при плоском изгибе
Из приведенного примера в п. 12.3 видно, что касательные напряжения в балках, где , существенно меньше норма

Напряжения в наклонных сечениях балки. Главные напряжения
В наклонных сечениях балки возникают и нормальные, и касательные напряжения (рисунок 12.9).

Дифференциальное уравнение изогнутой оси балки и его применение к определению перемещений и углов поворота
Под действием внешней нагрузки ось балки искривляется. Перемещение центра тяжести сечения АА΄ по направлению, перпендикулярному оси балки, называется прогибом балки в д

Метод начального параметра
(универсальное уравнение изогнутой оси балки)   При выводе уравнения изогнутой оси стержня методом начального параметра применим следующие правила.

Интеграл Мора
Определение перемещений и углов поворота различных сечений балки, лежащей на двух опорах, методом начальных параметров, представляющий собой достаточно трудоемкий процесс. Он требует громоздких выч

Продольный изгиб длинных тонких стержней. Критическая сила, критическое напряжение
Если тонкий длинный стержень сжимать продольными силами до некоторой предельной величины, то он будет испыт

Формула Эйлера для определения критической силы
При расчете стержней на продольный изгиб нужно определить критическую силу. Формула для ее определения была впервые выведена знаменитым математиком Леонардом Эйлером. Рассмотрим сжатый сте

Пределы применимости формулы Эйлера. Формула Ясинского
Эйлер при выводе своей формулы для определения критической силы предполагал, что материал стержня следует закону Гука. Этот закон, как известно, справедлив до тех пор, пока напряжения не превосходя

Понятие об усталости материалов. Циклы напряжений
Уже более 100 лет назад было замечено, что части машин и сооружений, подвергающиеся длительное время переменным напряжениям, могут разрушаться внезапно без заметных остаточных деформаций при напряж

Испытания материалов на усталость. Кривая выносливости, предел усталости
При расчете деталей машин и сооружений, на которые действуют переменные напряжения, основной характеристикой прочности материала является предел усталости или предел выносливости.

Факторы, влияющие на предел выносливости деталей конструкций
Опыты показывают, что на предел выносливости материала оказывают влияние многие факторы, в том числе концентраторы напряжений, абсолютные размеры деталей, качество их поверхностей и другие. Рассмот

Из истории сварки. Виды сварки. Типы сварных соединений
Возникновение сварки относится к IV веку до н. э. Тогда трипольские племена, обитавшие на территории Западной Украины, Молдавии и Румынии, выполняли кузнечную сварку меди, а в II веке до н. э. – бр

Ручная дуговая сварка
Схема ручной дуговой сварки покрытым электродом приведена на рисунке 17.2. На ней обозначены: 1 – хвостовик электрода; 2 – электродное покрытие; 3 – дуга; 4 – капля, пер

Дуговая сварка неплавящимся электродом в инертных газах
Схема дуговой сварки неплавящимся электродом в инертном газе показана на рисунке 17.5. На ней обозначены: 1 – основной металл; 2 – присадоч­ный металл; 3 – держатель электродов

Некоторые специальные виды сварки
К специальным условно отнесены следующие виды сварки: – термический класс: лазерная, электронно-лучевая, плазменная, электрошлаковая, термитная, газовая; –

Наплавка и наварка деталей
Наплавка и наварка – технологические процессы нанесения посредством сварки слоя металла с заданными свойствами и геометрическими параметрами на поверхность изделия. Наплавляются и

Расчет сварных швов на прочность
Расчет сварных соединений ведется с предположением о равномерном распределении напряжений по сечению швов. Для швов, выполненных автоматической сваркой под флюсом, а также ручной дуговой сваркой эл

Двутавры стальные горячекатаные (по ГОСТ 8239-89)

Швеллеры стальные горячекатаные (по ГОСТ 8240-89)

Уголки стальные горячекатаные равнополочные (по ГОСТ 8509-86)

Уголки стальные горячекатаные неравнополочные (по ГОСТ 8510-86)

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги