рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце. - раздел Механика, Законы сохранения в механике На Рис. 1.24.2 Показана Эллиптическая Орбита Планеты, Масса Которой Много Мен...

На рис. 1.24.2 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точка P траектории называется перигелием, точка A, наиболее удаленная от Солнца, называется афелием или апогелием. Расстояние между афелием и перигелием – большая ось эллипса.

Рисунок 1.24.2. Эллиптическая орбита планеты массой m << M. а – длина большой полуоси, F и F' – фокусы орбиты.

Почти все планеты Солнечной системы (кроме Плутона) движутся по орбитам, близким к круговым.

Второй закон Кеплера(1609 г.):

 

Радиус-вектор планеты описывает в равные промежутки времени равные площади.

 

Рис. 1.24.3 иллюстрирует второй закон Кеплера.

Рисунок 1.24.3. Закон площадей – второй закон Кеплера.

Второй закон Кеплера эквивалентен закону сохранения момента импульса. На рис. 1.24.3 изображен вектор импульса тела и его составляющие и Площадь, заметенная радиус-вектором за малое время Δt, приближенно равна площади треугольника с основанием rΔθ и высотой r:

 

Здесь – угловая скорость (см. §1.6).

Момент импульса L по абсолютной величине равен произведению модулей векторов и

 

Из этих отношений следует:

 

Поэтому, если по второму закону Кеплера то и момент импульса L при движении остается неизменным.

В частности, поскольку скорости планеты в перигелии и афелии направлены перпендикулярно радиус-векторам и из закона сохранения момента импульса следует:

rPυP = rAυA.

 

Третий закон Кеплера (1619 г.):

Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит:

 

 

Третий закон Кеплера выполняется для всех планет Солнечной системы с точностью выше 1 %.

На рис. 1.24.4 изображены две орбиты, одна из которых круговая с радиусом R, а другая – эллиптическая с большой полуосью a. Третий закон утверждает, что если R = a, то периоды обращения тел по этим орбитам одинаковы.

Рисунок 1.24.4. Круговая и эллиптическая орбиты. При R = a периоды обращения тел по этим орбитам одинаковы.

Несмотря на то, что законы Кеплера явились важнейшим этапом в понимании движения планет, они все же оставались только эмпирическими правилами, полученными из астрономических наблюдений. Законы Кеплера нуждались в теоретическом обосновании. Решающий шаг в этом направлении был сделан Исааком Ньютоном, открывшим в 1682 году закон всемирного тяготения:

 

где M и m – массы Солнца и планеты, r – расстояние между ними, G = 6,67·10–11 Н·м2/кг2 – гравитационная постоянная. Ньютон первый высказал мысль о том, что гравитационные силы определяют не только движение планет Солнечной системы; они действуют между любыми телами Вселенной. В частности, сила тяжести, действующая на тела вблизи поверхности Земли, имеет гравитационную природу.

Для круговых орбит первый и второй закон Кеплера выполняются автоматически, а третий закон утверждает, что T2 ~ R3, где T – период обращения, R – радиус орбиты. Отсюда можно получить зависимость гравитационной силы от расстояния. При движении планеты по круговой траектории на нее действует центростремительная сила, которая возникает за счет гравитационного взаимодействия планеты и Солнца:

 

Если то

Свойство консервативности гравитационных сил (см. §1.10) позволяет ввести понятие потенциальной энергии. Для сил всемирного тяготения удобно потенциальную энергию отсчитывать от бесконечно удаленной точки.

Потенциальная энергия тела массы m, находящегося на расстоянии r от неподвижного тела массы M, равна работе гравитационных сил при перемещении массы m из данной точки в бесконечность.

Математическая процедура вычисления потенциальной энергии тела в гравитационном поле состоит в суммировании работ на малых перемещениях (рис. 1.24.5).

Рисунок 1.24.5. Вычисление потенциальной энергии тела в гравитационном поле.

Закон всемирного тяготения применим не только к точеным массам, но ик сферически симметричным телам. Работа ΔAi гравитационной силы на малом перемещении есть:

 

Полная работа при перемещении тела массой m из начального положения в бесконечность находится суммированием работ ΔAi на малых перемещениях:

 

В пределе при Δri → 0 эта сумма переходит в интеграл. В результате вычислений для потенциальной энергии получается выражение

 

 

Знак «минус» указывает на то, что гравитационные силы являются силами притяжения.

Если тело находится в гравитационном поле на некотором расстоянии r от центра тяготения и имеет некоторую скорость υ, его полная механическая энергия равна

 

В соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной.

Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела (рис. 1.24.6).

При E = E1 < 0 тело не может удалиться от центра притяжения на расстояние r > rmax. В этом случае небесное тело движется по эллиптической орбите (планеты Солнечной системы, кометы).

Рисунок 1.24.6. Диаграмма энергий тела массой m в гравитационном поле, создаваемом сферически симметричным телом массой M и радиусом R.

При E = E2 = 0 тело может удалиться на бесконечность. Скорость тела на бесконечности будет равна нулю. Тело движется по параболической траектории.

При E = E3 > 0 движение происходит по гиперболической траектории. Тело удаляется на бесконечность, имея запас кинетической энергии.

Законы Кеплера применимы не только к движению планет и других небесных тел в Солнечной системе, но и к движению искусственных спутников Земли и космических кораблей. В этом случае центром тяготения является Земля.

Первой космической скоростью называется скорость движения спутника по круговой орбите вблизи поверхности Земли.

 

Второй космической скоростью называется минимальная скорость, которую нужно сообщить космическому кораблю у поверхности Земли, чтобы он, преодолев земное притяжение, превратился в искусственный спутник Солнца (искусственная планета). При этом корабль будет удаляться от Земли по параболической траектории.

 

Рис. 1.24.7 иллюстрирует космические скорости. Если скорость космического корабля равна υ1 = 7,9·103 м/с и направлена параллельно поверхности Земли, то корабль будет двигаться по круговой орбите на небольшой высоте над Землей. При начальных скоростях, превышающих υ1, но меньших υ2 = 11,2·103 м/с, орбита корабля будет эллиптической. При начальной скорости υ2 корабль будет двигаться по параболе, а при еще большей начальной скорости – по гиперболе.

Рисунок 1.24.7. Космические скорости. Указаны скорости вблизи поверхности Земли. 1 – υ = υ1 – круговая траектория; 2 – υ1 < υ < υ2 – эллиптическая траектория; 3 – υ = 11,1·103 м/с – сильно вытянутый эллипс; 4 – υ = υ2 – параболическая траектория; 5 – υ > υ2 – гиперболическая траектория; 6 – траектория Луны.

 

– Конец работы –

Эта тема принадлежит разделу:

Законы сохранения в механике

Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда когда значения действующих сил неизвестны... При стрельбе из орудия возникает отдача снаряд движется вперед а орудие... Рисунок Отдача при выстреле из орудия...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Закон сохранения импульса. Реактивное движение
При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая систем

Механическая работа и мощность
Энергетические характеристики движения вводятся на основе понятия механической работы илиработы силы. Работой A, совершаемой постоянной силой

Кинетическая и потенциальная энергии
Если тело некоторой массы m двигалось под действием приложенных сил и его скорость изменилась от

Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком.
A = –(Ep2 – Ep1).     Потенциальная энергия Ep зависит о

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией.
Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x1, тогда при переходе в новое состояние с удлинением x2 сила упругости совершит работу, р

Закон сохранения механической энергии
Если тела, составляющие замкнутую механическую систему, взаимодействуют между собой только силами тяготения и упругости, то работа этих сил равна изменению потенциальной энергии те

При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую.
Этот экспериментально установленный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии. Одним из следствий закона сохранения и превращени

Упругие и неупругие соударения
Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда неизвестны действующие силы. Примером такого рода задач является

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.
Во многих случаях столкновения атомов, молекул и элементарных частиц подчиняются законам абсолютно упругого удара. При абсолютно упругом ударе наряду с законом сохранения импульса выполняе

Элементы гидро- и аэродинамики
Движение жидкостей или газов представляет собой сложное явление. Для его описания используются различные упрощающие предположения (модели). В простейшей модели жидкость (или газ) предполагаются

Вращение твердого тела
Для кинематического описания вращения твердого тела удобно использовать угловые величины: угловое перемещение Δφ, угловую скорость ω

Законы Кеплера
В мире атомов и элементарных частиц гравитационные силы пренебрежимо малы по сравнению с другими видами силового взаимодействия между частицами. Очень непросто наблюдать гравитационное взаимодейств

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги