рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Цвета тонких пластинок

Цвета тонких пластинок - раздел Механика, КОЛЕБАНИЯ И ВОЛНЫ Как Было Выяснено Ранее, При Точечных Источниках Света Будут Наблюдаться Резк...

Как было выяснено ранее, при точечных источниках света будут наблюдаться резкие интерференционные картины. В таком случае при любом положении экрана, пересекающего систему поверхностей максимумов и минимумов, мы получим отчетливую картину интерференционных полос, которые, следовательно, не имеют определенной области локализации и могут считаться не локализованными. Однако необходимое для этого условие точечности источника осуществляется лишь приближенно, а во многих случаях и совсем не выполняется. Особенно часто нам приходится иметь дело с протяженным источником при явлениях интерференции, наблюдаемых в естественных условиях, когда источником света служит участок неба, т. е. рассеянный дневной свет. Наиболее часто встречающийся и весьма важный случай подобного рода имеет место при освещении топких прозрачных пленок, когда необходимое для возникновения двух когерентных пучков расщепление световой волны происходит вследствие отражения света передней и задней поверхностями пленки (рис. 4.1).

Явление это, известное под названием цветов тонких пластинок, легко наблюдается на мыльных пленках (мыльных пузырях), на тончайших пленках масла (нефти), плавающих на поверхности воды, на пленках прозрачных окислов, нередко присутствующих на поверхности старых стекол или на металлах (при закалке полированных стальных изделий — так называемые цвета побежалости), и т. д.

Опыт показывает, что в этих случаях видимость интерференционной картины максимальна в определенной и часто весьма ограниченной области пространства вблизи пленок и быстро убывает с увеличением расстояния от их поверхности. В перечисленных выше случаях оказывается, что высокая видимость интерференционной картины, наблюдаемой в отраженном от пленок свете, имеет место лишь в тонком слое, практически совпадающем с поверхностью пленок, хотя отраженные от них световые пучки перекрываются в значительном объеме пространства. Такие интерференционные картины принято называть локализованными.

В зависимости от толщины и геометрической формы пленок, а также от условий их освещения область локализации интерференционной картины оказывается более или менее ограниченной и более или менее близкой к поверхности пленок.

На рис. 4.1 была показана принципиальная схема опыта для наблюдения описываемых явлений. Буквой Р обозначена фотопластинка или экран, на который проектируется изображение пленки и где наблюдается интерференционная картина.

Для того чтобы выяснить условия формирования интерференционной картины вблизи поверхности тонких пленок и причину ее ярко выраженной пространственной локализации, рассмотрим схему подобного опыта в предельно простом варианте.

Пусть на поверхность тонкого прозрачного клина, изготовленного из вещества с показателем преломления п, падают почти нормально световые пучки от протяженного источника света. На рис. 4.2 для наглядности угол падения одного из таких световых пучков увеличен в десятки раз, по сравнению с его действительным значением.

Как было выяснено раньше, когерентными являются световые волны, излучаемые одной точкой источника света. Волны, излучаемые соседними его точками, уже не будут когерентными. Поэтому начнем с расчета интерференции световых пучков, излучаемых одной точкой протяженного источника света. Вычислим в соответствии с установленной на опыте локализацией интерференционной картины разность хода Δ когерентных световых пучков 1' и 2' в точке А на поверхности клина (см. рис. 3.2). Линза, проектирующая интерференционную картину на экран, этой разности хода уже не изменит, и для световых пучков, сводимых воедино линзой в точке экрана А', она будет та же, что и в точке А. В ходе расчета, помимо непосредственной геометрической разности хода интерферирующих волн, надо учесть скачок фазы на π, испытываемый волной,

характеризуемой лучом 2', при отражении от поверхности клина с показателем преломления, большим показателя преломления окружающего клин воздуха. Имеем

 

Δ = (BD + DA) n – (AC – ½ λ ); n (BD + DA) = 2hn / cos r

AC = 2h tg r sin i ; sin i / sin r = n,

 

где h = ED – толщина клина; отсюда

 

Δ = 2hn cos r +1/2 λ (4.1)

 

Полученное значение разности хода Δ является функцией h и r. Относительно угла i, а следовательно и r, уже было сказано при описании постановки опыта, что они малы и изменяются в малых пределах. Здесь следует добавить, что если это не так, то, уменьшая апертуру линзы, проектирующей интерференционную картину на экран, можно уменьшить диапазон вариаций угла r. Если же интерференционная картина наблюдается непосредственно глазом, то такое уменьшение апертуры наблюдения осуществляется, естественно, за счет малых размеров отверстия — зрачка глаза.

Поэтому можно считать, что разность хода Δ оказывается, фактически, функцией только h, т. е. толщины клина в точке А. Полученный результат заслуживает обсуждения. Из соотношения (4.1) следует, что при малых вариациях значений углов i (и соответственно r) разность хода Δ световых пучков, излучаемых и другими точками протяженного источника света, будет в точке А приблизительно такой же, как и для рассмотренных пучков 1' и 2'. Следовательно, в точке А на поверхности клина (или вблизи нее) интерференционные картины, создаваемые различными парами световых пучков, приходящими от разных точек светящейся поверхности протяженного источника света, будут приблизительно совпадать между собой. Отсюда вытекает высокая видимость интерференционной картины на поверхности клина (или вблизи нее). В других областях пространства над клином будет иметь место беспорядочное наложение различных интерференционных картин и, следовательно, однородная освещенность этих областей пространства. Другими словами, получает объяснение локализация интерференционной картины вблизи поверхности клина.

Если освещать клин точечным источником света, т. е. использовать исключительно когерентное излучение, то легко понять, что схема рассматриваемого опыта будет аналогична схемам интерференционных опытов Френеля и интерференционная картина будет нелокализованной. Таким образом, локализация интерференционной картины в рассматриваемых случаях есть следствие использования протяженных источников света. Можно получить локализованную интерференционную картину от пленок, используя и точечный источник света, но тогда он должен быть либо отнесен очень далеко от пленки, либо его излучение должно быть коллимировано объективом.

Строгая постановка вопроса о локализации интерференционной картины в этих случаях и ее общее математическое решение принадлежат Майкельсону. Майкельсон показал, что по мере уменьшения клинообразности пленки область локализации интерференционной картины удаляется от пленки.

Из формулы (4.1) для Δ вытекает также разъяснение геометрической конфигурации наблюдаемых интерференционных полос. Именно, из нее следует, что значения Δ одинаковы для всех участков пленки (в нашем случае — клина), где ее толщина h одинакова, если пленка освещена пучком параллельных лучей..

Поскольку разность хода интерферирующих волн определяет амплитуду результирующего колебания и, следовательно, интенсивность в точке пространства, где происходит суперпозиция этих волн, освещенность всех точек интерференционной картины, соответствующих одинаковым толщинам h пленки (клиyа), будет одинаковой.

Поэтому интерференционные полосы на поверхности пленки (клина) имеют равную освещенность на всех точках поверхности, соответствующих одинаковым толщинам пленки. В случае клина конфигурация интерференционных полос особенно проста. Очевидно, интерференционные полосы параллельны ребру клипа, и картина будет периодической. В общем случае конфигурация интерференционных полос па поверхности пленки будет соответствовать геометрическим местам пленки, в которых она имеет одинаковую толщину.

Отсюда происходит название, приписываемое интерференционным полосам подобных картин. Их называют интерференционными полосами равной толщины или, короче, полосами равной толщины. Нетрудно наблюдать подобную картину, если осуществить тонкую пластинку в виде мыльной пленки, натянутой на вертикально расположенный каркас: под действием силы тяжести пленка принимает вид клина, и полосы равной толщины вырисовываются на поверхности пленки в виде горизонтальных прямых, слегка искаженных местными дефектами пленки.

Изложенное относительно способа наблюдения интерференции в тонкой пластинке при помощи линзы верно и при наблюдении при помощи другой оптической системы, например трубы, или просто невооруженным глазом. Следует только иметь в виду, что при наблюдении глазом мы используем обычно гораздо более узкие пучки, чем при проектировании линзой (диаметр человеческого зрачка — около 3—5 мм). Это означает, что работает небольшой участок источника, поэтому локализация полос на поверхности пластинки не так отчетливо выражена: мы наблюдаем интерференционную картину и при не очень строгой аккомодации глаза на пленку.

В хороших лабораторных условиях при освещении тонких пленок белым светом удается еще наблюдать интерференционные полосы 4—5-го порядка за счет избирательной спектральной чувствительности человеческого глаза. Следовательно, толщина пленок из веществ с показателем преломления около 1,3 должна составлять приблизительно 1,5—2 длины световой волны.

 

 

– Конец работы –

Эта тема принадлежит разделу:

КОЛЕБАНИЯ И ВОЛНЫ

На сайте allrefs.net читайте: КОЛЕБАНИЯ И ВОЛНЫ. ВВЕДЕНИЕ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Цвета тонких пластинок

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Образование и распространение волн в упругой среде
Начнем с определения упругой среды. Как можно заключить из названия упругая среда это такая среда в которой действуют силы упругости. Применительно к нашим целям, добавим, что при любом возмущении

Линию, вдоль которой происходит распространение фронта волны, называют лучом.
  Нетрудно сообразить, что в изотропной среде луч всегда нормален (перпендикулярен) к волновой поверхности. В изотропной среде все лучи представляют собой прямые линии. Каждая прямая,

Плоскость, проходящая через луч, вдоль которого распространяется волна, и через направление колебаний частиц в ней называется плоскостью поляризации.
  Эта плоскость может оставаться одной и той же при перемещении вдоль луча, в таком случае волна называется линейно поляризованной, а может как то менять свою ориентацию в прос

Уравнение волны
При описании волнового процесса требуется найти амплитуды и фазы колебательного движения в различных точках среды и изменение этих величин с течением времени. Эта задача может быть решена, если изв

Поток энергии в волновых процессах
    Процесс распространения волны в каком-нибудь направлении в среде сопровождается переносом энергии колебаний в этом направлении. Допустим, что S есть часть фро

Эффект Допплера.
  Разберем вопрос о том, какова связь между колебаниями, испускаемыми источником, и колебаниями, воспринимаемыми каким-либо прибором, регистрирующим колебания, если источник и прибор

Стоячие волны
  Особым примером результата интерференции двух волн служат так называемые стоячие волны, образующиеся в результате наложения двух встречных волн с одинаковыми амплитудами.

Волновое уравнение
    Из курса электричества мы уже знаем, что переменное магнитное поле создает вихревое электрическое поле. Линии этого поля замкнуты, оно существует независимо от элект

Свойства электромагнитных волн
В предыдущем параграфе мы видели, что в электромагнитной волне векторы Е и Н перпендикулярны друг другу. Но кроме того они еще и перпендикулярны напр

Энергия и импульс электромагнитного поля
  Наверное вы уже поняли, что основные свойства волн не зависят от их природы. Это касается и такого важного свойства как перенос энергии. Подобно механическим волнам, электромагнитны

Электромагнитная природа света
    С самой ранней эпохи еще до древних греков, когда, как об этом говорит легенда, Аполлон разъезжал в огненной колеснице по небу, и до наших дней, когда Тверская утопа

Естественный свет
В предыдущей главе мы назвали простейшей синусоидальную волну вида:   (2.1) где конечно ω = 2πν . Заметим здесь, такую волну называют ещ

Волновой пакет
Понятие фазовой скорости, введенное нами ранее, применимо только к строго монохроматическим волнам, которые реально не осуществимы, так как они должны были бы существовать неограниченно долго во вр

Законы отражения и преломления света
  Первые законы оптических явлений были установлены на основе представлений о прямолинейных световых лучах. Они относились к изменениям направления распространения света при отражении

Геометрическая оптика
    Устройство большого числа оптических приборов базируется на представлении о световых лучах, распространяющихся прямолинейно в однородном веществе и испытывающих отра

Увеличение
  Выберем в качестве светящегося предмета линию А1В1, перпендикулярную к оси, и построим ее изображение А2В2 (рис. 6.1). Отно

Центрированная оптическая система
Случай преломления на одной сферической поверхности сравнительно редок. Большинство реальных преломляющих систем содержит, по крайней мере, две преломляющие поверхности (линза) или большее их число

Преломление в линзе. Общая формула линзы
    Большое значение имеет простейший случай центрированной системы, состоящей всего из двух сферических поверхностей, ограничивающих какой-либо прозрачный хорошо прелом

Глаз как оптическая система
Глаз человека представляет собой сложную оптическую систему, которая по своему действию аналогична оптической системе фотоаппарата. Схематическое устройство глаза представлено на рис. 1. Глаз имеет

Фотометрические понятия и единицы
Воздействие света на глаз или какой-либо другой приемный аппарат состоит прежде всего в передаче этому регистрирующему аппарату энергии, переносимой световой волной. Поэтому, прежде чем рассматрива

Понятие о когерентности
Закон независимости световых пучков, упомянутый ранее, означает, что световые пучки, встречаясь, не воздействуют друг на друга. Это положение было ясно сформулировано Гюйгенсом, который писал в сво

Интерференция волн
  В соответствии с определением предыдущего параграфа мы говорим об интерференции волн, когда при их совместном действии не происходит суммирования интенсивностей. Условием инт

Осуществление когерентных волн в оптике
Опыт показывает, что когда два независимых источника света, например две свечи, или даже два различных участка одного и того же светящегося тела посылают световые волны в одну область пространства,

Кольца Ньютона
    Особый исторический интерес представляет случай интерференции в тонком воздушном слое, известный под именем колец Ньютона. Эта картина наблюдается, когда выпуклая по

Интерференция в плоскопараллельных пластинках. Полосы равного наклона
    Из соотношения Δ = 2hn cos r следует, что для плоскопараллельной однородной пластинки (h и п всюду одни и те же) разность хода может

Интерферометр Майкельсона
Рассмотрим вначале подробнее одну схему, на которой очень отчетливо выступают все наиболее существенные детали интерференционной схемы. Эта схема, известная под названием билинзы Бийе, осу

Интерференция немонохроматических световых пучков
Как уже упоминалось интерференция немонохроматического света приводит к сложной картине, состоящей из совокупности максимумов и минимумов, соответствующих разным λ,. Если λ имеет все возм

Принцип Гюйгенса — Френеля
Явления интерференции света во всем их многообразии служат убедительнейшим доказательством волновой природы световых процессов. Однако окончательная победа волновых представлений была невозможна бе

Зонная пластинка
  Хорошей иллюстрацией, подтверждающей приведенный метод рассуждения Френеля, может служить опыт с зонной пластинкой. Как следует из сказанного выше, радиус т-й зоны Френеля ра

Графическое вычисление результирующей амплитуды
  Рассмотрение вопроса о действии световой волны в точке В (см. рис. 1.4), равно как и многих других аналогичных вопросов, чрезвычайно удобно производить, пользуясь графически

Дифракция Френеля на круглом отверстии
  Применение метода Френеля позволяет предвидеть и объяснить особенности в распространении световых волн, наблюдающиеся тогда, когда часть фронта идущей волны перестает действовать вс

Дифракция Фраунгфера от щели
    До сих пор мы рассматривали дифракцию сферических или плоских воли, изучая дифракционную картину в точке наблюдения, лежащей па конечном расстоянии от препятствия. И

Дифракция на двух щелях
Рассмотрим опять явление дифракции на щели по схеме, изображенной на рис. 5.2. Положение дифракционных максимумов и минимумов не будет зависеть от положения щели, ибо положение максимумов определяе

Дифракционная решетка
  Рассмотрение дифракции на двух щелях показывает, что в этом случае дифракционные максимумы становятся более узкими, чем в случае одной щели. Увеличение числа щелей делает это явлени

Волновые поверхности в одноосном кристалле.
  Объяснение двойного лучепреломления в одноосных кристаллах было впервые дано Гюйгенсом в его „Трактате о свете" (1690 г.). Гюйгенс предположил, что обыкновенному лучу соответст

Поляризационные приборы.
    Для получения из естественного света плоско поляризованного света можно воспользоваться либо поляризацией при отражении под углом Брюстера, либо двойным лучепреломле

Интерференция поляризованных лучей. Эллиптическая и круговая поляризация.
    Лучи, обыкновенный и необыкновенный, возникающие при двойном лучепреломлении из естественного свети, не когерентны. Если естественный луч разложить па два луча, поля

Кристаллическая пластинка между николями.
  До сих пор мы рассматривали интерференцию поляризованных лучей, колебания в которых происходят во взаимно перпендикулярных направлениях. Рассмотрим теперь интерференцию двух поляриз

Искусственное двойное лучепреломление.
  В начале девятнадцатого столетия было открыто возникновение двойного лучепреломления в прозрачных изотропных телах под влиянием механической деформации. Оптическую анизотропию, появ

Двойное лучепреломление в электрическом поле.
    Другим примером искусственной анизотропии является анизотропия, возникающая в телах под влиянием электриче­ского поля. Этот вид анизотропии был открыт в 1875 г. Керр

Вращение плоскости поляризации.
    В направлении оптической оси свет распространяется в кристалле так же, как и в однородной среде, не давая двойного лучепреломления. Однако было замечено, что в крист

Магнитное вращение плоскости поляризации.
    Вещества, не обладающие естественной способностью вращать плоскость поляризации, приобретают такую способность под влиянием внешнего магнитного поля. Явление магнитн

Дисперсия света. Методы наблюдения и результаты
Любой метод, который применяется для определения показателя преломления, — преломление в призмах, полное внутреннее отражение, интерференционные приборы — может служить для обнаружения дисперсии.

Основы теории дисперсии
    Плодотворная попытка истолкования богатого материала, полученного экспериментальным путем, была сделана еще в «упругой» теории света. Хотя эта теория не могла связат

Поглощение (абсорбция) света
Прохождение света через вещество ведет к возникновению колебаний электронов среды под действием электромагнитного поля волны и сопровождается потерей энергии последней, затрачиваемой на возбуждение

Ширина спектральных линий и затухание излучения
  Уже неоднократно указывалось, что идеальное монохроматическое излучение представляет собой фикцию и что в реальных случаях излучение всегда соответствует некоторому интервалу длин в

Прохождение света через оптически неоднородную среду
Как уже упоминалось ранее, вторичные волны, вызываемые вынужденными колебаниями электронов, рассеивают в стороны часть энергии, приносимой световой волной. Другими словами, распространение света в

Частота и поляризация – основные характеристики света в долазерной оптике
Световая волна, являющаяся волной электромагнитной, характеризуется частотой, амплитудой и поляризацией. Гармоническая (или монохроматическая) волна, распространяющаяся вдоль оси , описывается выра

Роль интенсивности света
В подавляющем числе оптических эффектов, исследованных до создания лазеров, амплитуда световой волны А все же не влияла на характер явления. В большинстве случаев количественные, а тем более

Линейный атомный осциллятор
Взаимодействие света со средой. Причины, по которым в линейной оптике характер явлении не зависит от интенсивности излучения, можно выявить, обратившись к ее теоретическим основам. Известно, что эф

Нелинейный атомный осциллятор. Нелинейные восприимчивости
Движение электрона в поле ядра — это движение в потенциальной яме, имеющей конечную глубину (рис. 1,а). Наглядным, хотя и грубым, аналогом движения электрона в поле ядра и соответству

Причины нелинейных оптических эффектов
Нелинейный отклик атомного или молекулярного осциллятора на сильное световое поле – наиболее универсальная причина нелинейных оптических эффектов. Существуют и другие причины: например, изменение п

Фотоны друг с другом непосредственно не взаимодействуют
В физике используется (и подтверждается) представления о «непосредственном взаимодействии», приводящем к рассеянию частиц друг на друге, к поглощению одних частиц другими, взаимным превращениям час

Однофотонные и многофотонные переходы
Оптические переходы разделяются на однофотонные и многофотонные. В однофотонном переходе участвует, т. е. испускается либо поглощается один фотон. В многофотонном переходе участвуют о

Виртуальный уровень.
На рисунке 1а изображены два однофотонных перехода: сначала поглощается один фотон с энергией и микрообъект переходит с уровня 1 на уровень 2, затем поглощается другой фотон и микрообъект пе

Каким образом микрообъект играет роль «посредника» в процессах преобразования «света» в «свет»?
Рассмотрим различные процессы «превращения» одних фотонов в другие фотоны. Начнем с процесса, представленного на рисунке 2. Микрообъект поглощает фотон с энергией и переходит с уровня 1

Процесс, описывающий генерацию второй гармоники.
Многофотонные процессы, в которых начальное и конечное состояния микрообъекта одинаковы, представляют для нелинейной оптики особый интерес. Выше мы рассмотрели двухфотонный процесс. Далее рассмотри

Некогерентные и когерентные процессы преобразования света в свет
В предыдущем вопросе на примере (элементарных актов взаимодействия фотонов с микрообъектом были рассмотрены различные процессы преобразования света в свет. В одних процессах переходы с поглощением

Тепловое излучение. Закон Кирхгофа
  Тепловое излучение — это электромагнитное излучение, возбуждаемое за счет энергии теплового движения атомов и молекул. Если излучающее тело не получает теплоты извне, то оно охлажда

Законы излучения абсолютно черного тела
  Спектральная плотность излучения абсолютно черного тела является универсальной функцией длины волны и температуры. Это значит, что спектральный состав и энергия излучения абсолютно

Фотоэффект
Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было в

Специальная теория относительности.
  В классической физике до появления теории относительности (1905 г.), предполагалось, что любой физический процесс, использо­ванный (как «эталонный») для измерения времени, выявляет

Преобразования Лоренца.
  Допустим, что один из законов физики, полученный относительно системы отсчета S, имеет вид f (x, y, z, t . . . )=0,   а относительно си

Следствия из преобразований теории относи­тельности.
  Рассмотрим наиболее важные следствия преобра­зований Лоренца.   а) Длина тел в разных системах. Преобразова­ния Лоренца показывают, что одно и то же

Механика теории относительности.
  Рассуждения, приведенные выше, показывают, что оптические (и электро­магнитные) явления подтверждают кинематику теории отно­сительности, вытекающую из преобразований Лоренца. Есте­с

Эффект Комптона
  Рисунок 1 Особенно отчетливо проявляются корпускулярные свойства света в явлении, которое получило название

Постулаты Бора. Опыт Франка и Герца
В предыдущем параграфе было выяснено, что ядерная модель атома в сочетании с классической механикой и электродинамикой оказалась неспособной объяснить ни устойчивость атома, ни характер атомного сп

Волновые свойства частиц. Соотношение неопределенностей.
  В 1923 году произошло примечательное событие, которое в значительной степени ускорило развитие квантовой физики. Французский физик Луи де Бройль выдвинул гипотезу об универсальности

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги