рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Поглощение (абсорбция) света

Поглощение (абсорбция) света - раздел Механика, КОЛЕБАНИЯ И ВОЛНЫ Прохождение Света Через Вещество Ведет К Возникновению Колебаний Электронов С...

Прохождение света через вещество ведет к возникновению колебаний электронов среды под действием электромагнитного поля волны и сопровождается потерей энергии последней, затрачиваемой на возбуждение колебаний электронов. Частично эта энергия вновь возвращается излучению в виде вторичных волн, посылаемых электронами, частично же она может переходить и в другие формы энергии. Если на поверхность вещества падает параллельный пучок (плоская волна) с интенсивностью I, то описываемые процессы должны вести к уменьшению I по мере проникновения волны в вещество. Действительно, опыт показывает, что интенсивность плоской волны обнаруживает такое систематическое уменьшение согласно закону

 

 

 

где I0 — интенсивность волны, вступающей в вещество, d — толщина слоя и α — коэффициент поглощения, зависящий, вообще говоря, от длины волны.

При измерении α надо, конечно, учитывать, что часть света отражается на границе исследуемого вещества, и вносить соответствующие поправки, например, при помощи формул Френеля. Еще удобнее измерять интенсивности света I1 и I2 прошедшего соответственно сквозь слои толщины d1 и d2. Вычисляя коэффициент поглощения из соотношения I1/I2 == ехр [α (d1 - d2)], найдем истинное значение α, свободное от поправок на отражение.

Численное значение этого коэффициента α показывает толщину слоя d, равную 1/α, после прохождения которого интенсивность плоской волны падает в е = 2,72 раза. Так как α есть функция длины волны, то обычно значения его дают в виде таблицы или графика. Иногда зависимость α от λ имеет прихотливый вид, обнаруживая существование довольно узких областей сильного поглощения (большие значения α), в то время как близко расположенные длины волн проходят без заметного ослабления. Особенно замечательно поглощение, обнаруживаемое при невысоком давлении в парах большинства металлов, представляющих собой собрание атомов, расположенных на значительном расстоянии друг от друга, т. е. практически изолированных. Коэффициент поглощения таких паров везде очень мал (близок к пулю) и лишь для очень узких спектральных областей (шириной в несколько сотых ангстрема) обнаруживает резкие максимумы. Так, для паров натрия коэффициент поглощения может быть изображен в виде кривой, показанной на рис. 3.1. При тщательно контролируемых условиях опыта удавалось наблюдать в спектре поглощения паров Nа до 50 таких пар (дублетов), которые расположены тем ближе, чем короче длина волны.

Указанные области резкой абсорбции атомов соответствуют частотам собственных колебаний электронов внутри атомов. В случае газов, молекулы которых построены из нескольких атомов, обнаруживаются также собственные частоты, соответствующие колебаниям атомов внутри молекулы. Так как массы атомов в десятки тысяч раз больше массы электрона, то эти молекулярные собственные частоты обладают гораздо большими периодами, т. е. соответствуют инфракрасной области спектра.

Спектр многоатомных газов представляет ряд более или менее сложных полос, а одноатомные газы (пары металлов) характеризуются резкими линиями поглощения, ширина которых нередко измеряется сотыми долями ангстрема. По мере повышения давления газов спектры поглощения их становятся все более и более расплывчатыми и при высоких давлениях приближаются к спектрам поглощения жидкостей. Эти наблюдения с очевидностью показывают, что расширение узких полос поглощения есть результат взаимодействия атомов друг с другом.

Общая закономерность , вводящая понятие коэффициента поглощения α и показывающая, что интенсивность света падает в геометрической прогрессии, когда толщина слоя нарастает в арифметической прогрессии, была установлена экспериментально и обоснована теоретически Бутером (1729 г.). Она называется законом Бугера. Физический смысл этого закона состоит в том, что показатель поглощения не зависит от интенсивности света, а следовательно, и от толщины поглощающего слоя. С. И. Вавилов установил, что закон Бугера выполняется в крайне широких пределах изменения интенсивности света (примерно 1020 раз).

Однако следует принять во внимание, что при поглощении света молекула переходит в новое, возбужденное состояние, запасая поглощенную энергию. Пока ока находится в таком состоянии, ее способность поглощать свет изменена. То обстоятельство, что в опытах Вавилова закон Бугера соблюдался при самых больших интенсивностях, доказывает, что число таких возбужденных молекул в каждый момент остается незначительным, т. е. они очень короткое время находятся в возбужденном состоянии. Действительно, для веществ, с которыми были выполнены указанные опыты, его длительность не превышает 10-8 с. К этому типу относится огромное большинство веществ, для которых, следовательно, справедлив закон Бугера. Выбрав специально вещества со значительно большим временем возбужденного состояния, Вавилов мог наблюдать, что при достаточно большой интенсивности света коэффициент поглощения уменьшается, ибо заметная часть молекул пребывает в возбужденном состоянии. Эти отступления от закона Бугера представляют особый интерес, так как они представляют собой исто­ически первые указания па существование нелинейных оптических явлений, т. е. явлений, для которых несправедлив принцип суперпозиции. Последующие исследования привели к открытию большого класса родственных явлений, содержание которых является предметом нелинейной оптики. Таким образом, закон Бугера имеет ограниченную область применимости. Однако в огромном числе случаев, когда интенсивность света не слишком велика и продолжительность пребывания атомов и молекул в возбужденном состоянии достаточно мала, закон Бугера выполняется с высокой степенью точности.

Бугер рассмотрел вопрос о поглощении света средой, плотность которой не везде одинакова, и высказал убеждение, что «свет может претерпевать равные изменения, лишь встречая равнее число частиц, способных задерживать лучи или рассеивать их», и что, следовательно, для поглощения имеют значение «не толщины, а массы вещества, содержащиеся в этих толщинах». Этот второй закон Бугера приобретает большое практическое значение, ибо опыт действительно показал, что во многих случаях, когда имеет место поглощение света молекулами газов или молекулами вещества, растворенного в практически непоглощающем растворителе, коэффициент поглощения оказывается пропорциональным числу поглощающих молекул на единицу длины пути световой волны или, что то же, на единицу объема, т. е. пропорционален концентрации с. Другими словами, коэффициент абсорбции α выражается соотношением

α = Ас,

и обобщенный закон Бугера принимает вид

 

I=I0exp(-Acd)

 

где А — новый коэффициент, не зависящий от концентрации и характерный для молекулы поглощающего вещества.

Утверждение, что А есть постоянная величина, не зависящая от концентрации, нередко именуется законом Бера, который на основании своих измерений поглощения света окрашенными жидкостями также пришел к этому выводу (1852 г.). Его физический смысл состоит в том, что поглощающая способность молекулы не зависит от влияния окружающих молекул. Закон этот надо рассматривать скорее как правило, ибо наблюдаются многочисленные отступления от него, особенно при значительном увеличении концентрации, т. е. значительном уменьшении взаимного расстояния между молекулами поглощающего вещества. Точно так же нередко можно обнаружить зависимость А для растворенных веществ от природы растворителя, что также указывает на влияние окружающих молекул на поглощательную способность изучаемой молекулы.

В тех случаях, когда А можно считать не зависящим от концентрации, обобщенный закон Бугера оказывается очень полезным для определения концентрации поглощающего вещества путем измерения поглощения, которое может быть выполнено очень точно при помощи фотометров более или менее сложной конструкции. Этим приемом нередко пользуются в лабораторной и промышленной практике для быстрого определения концентрации веществ, химический анализ которых оказывается очень сложным (колориметрия и спектрофотометрия, абсорбционный спектральный анализ).

За последние годы особое развитие получил анализ молекулярного состава сложных смесей, основанный на измерении поглощения в ультрафиолетовой и особенно в инфракрасной областях спектра. Спектры поглощения многих органических молекул оказываются очень характерными, благодаря чему удается надежно устанавливать как молекулярный состав, так и количественное содержание отдельных компонент в смеси.

Метод этот отличается большой чувствительностью, ибо при малых концентрациях исследуемого вещества с можно увеличить поглощение за счет увеличения толщины слоя А. При исследовании смесей очень сложного состава возникают затруднения вследствие наложения полос поглощения разных веществ. Эти затруднения в большей степени проявляются в ультрафиолетовой области, чем в инфракрасной, ибо, как правило, полосы поглощения в ультрафиолетовой (и видимой) части спектра шире, чем в инфракрасной. Существенную помощь при анализе оказывает предварительная подготовка пробы (разгонка и некоторые другие физико-химические операции), которые позволяют разделить сложную смесь на ряд фракций более простого состава. Нередко очень полезным оказывается переход от жидкостей к парам, а также изучение абсорбции при возможно низких температурах.

Изложенные выше закономерности, установленные на опыте, показывают, что законы абсорбции света в основном определяются свойствами атома или молекулы, поглощающей свет, хотя действие окружающих молекул может значительно исказить результат. Особенно в случае жидких и твердых тел влияние окружения иногда радикально меняет абсорбирующую способность атома вследствие того, что под действием полей окружающих молекул поведение электронов, определяющих оптические свойства атомов, изменяется до неузнаваемости. Особенно разительно в этом отношении поведение металлов. Действительно, хорошо известно, что пары металлов, даже таких, как, например, серебро или натрий, представляют собой столь же хорошие изоляторы, как и пары (газы) других веществ, тогда как металлическое серебро или натрий являются наилучшими проводниками электричества. Таким образом, поведение наиболее слабо связанных с атомами электронов в изолированных атомах металлов и в конденсированном металле резко различно. В соответствии с этим металлический натрий не обнаруживает никаких признаков спектра поглощения, характерного для паров натрия.

Для атомов некоторых веществ, например редких земель, к числу которых относится неодим (Nd) и празеодим (Рr), можно считать установленным, что оптический электрон принадлежит не к группе, расположенной в самой периферической части атома, как для большинства веществ, в частности для щелочных металлов, а к одной из внутренних групп. Такое «защищенное» положение оптического электрона редких земель объясняет, по-видимому, то обстоятельство, что соли этих веществ, даже введенные внутрь твердого вещества (стекло), обнаруживают очень узкие полосы поглощения, приближающиеся к полосам в спектре поглощения изолированных атомов. Из приведенных фактов и рассуждений явствует, что вопрос о природе поглощения света легче выяснить при исследовании поглощения изолированными атомами, т. е. разреженными газами.

Введенный нами в § 2 коэффициент g, характеризующий затухание электронного колебания в атоме, объясняет явление абсорбции. Этот коэффициент g, введенный в наше рассмотрение, имел чисто формальный смысл и скрывал в себе целый ряд различных процессов, ведущих к растрате энергии, заимствованной электроном от падающей волны.

а) Один из процессов, связанных с растратой энергии, заимствованной осциллятором, есть процесс излучения вторичных волн. Излучение является причиной рассеяния накопленной осцилля­тором энергии, вследствие чего амплитуда его колебаний достигает определенного предела, а не стремится к бесконечным значениям, как следует из упрощенной теории (вынужденные колебания без затухания). Эта причина затухания указана Планком и называется затуханием вследствие излучения; она не вызывает превращения лучистой энергии первичной волны в другие формы энергии, а лишь обусловливает рассеяние этой лучистой энергии во все стороны. Таким образом, энергия плоской волны, распространяющейся по первоначальному направлению убывает и, следовательно, описанные выше приемы исследования будут обнаруживать ослабление света.

Однако, как показал Л. И. Мандельштам, затухание вследствие рассеяния проявляется в полной мере лишь для изолированного осциллятора. Вследствие интерференции вторичных волн, рассеиваемых различными осцилляторами среды, ослабление падающей волны может быть в значительной мере скомпенсировано. Это явление тесно связано с явлением рассеяния света и будет несколько подробнее рассмотрено ниже.

Указанная причина затухания может играть главную роль для очень разреженных газов и меньшую для жидких или кристаллических тел, особенно при низких температурах, когда осцилляторы этих тел расположены так, что образуют вполне однородную среду.

Затухание вследствие излучения тем больше, чем больше излучение, т. е. чем больше амплитуды вынужденного колебания. Так как в знаменателе выражения для этой амплитуды стоит (ω022 ), то она достигает максимума при ω0 = ω, т. е. максимальное поглощение соответствует той частоте ω0, которая совпадает с частотой собственного колебания атома. Последний вывод вполне соответствует наблюдениям согласно которомым область аномальной дисперсии совпадает с областью максимального поглощения.

б) Возможны и другие процессы, ведущие к «истинному» поглощению света, т. е. сопровождающиеся переходом лучистой энергии в иную форму, например, в тепло. Для газовой фазы Лорентц указал на такой процесс, состоящий в столкновении возбужденного, т. е. колеблющегося, атома с другим атомом. В данном случае колебательная энергия может переходить в энергию поступательного движения столкнувшихся атомов, т. е. в тепло. И этот процесс поглощает особенно много энергии в том случае, когда ω0 = ω. В случае конденсированных сред (жидкости, твердые тела) передача энергии от возбужденного атома или молекулы тем более облегчена в силу тесного расположения частиц среды и сильного их взаимодействия друг с другом. В случае, например, жидкостей энергия колебаний ядер передается соседним молекулам за время, равное по порядку величины 10-12 с.

 

 

– Конец работы –

Эта тема принадлежит разделу:

КОЛЕБАНИЯ И ВОЛНЫ

На сайте allrefs.net читайте: КОЛЕБАНИЯ И ВОЛНЫ. ВВЕДЕНИЕ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Поглощение (абсорбция) света

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Образование и распространение волн в упругой среде
Начнем с определения упругой среды. Как можно заключить из названия упругая среда это такая среда в которой действуют силы упругости. Применительно к нашим целям, добавим, что при любом возмущении

Линию, вдоль которой происходит распространение фронта волны, называют лучом.
  Нетрудно сообразить, что в изотропной среде луч всегда нормален (перпендикулярен) к волновой поверхности. В изотропной среде все лучи представляют собой прямые линии. Каждая прямая,

Плоскость, проходящая через луч, вдоль которого распространяется волна, и через направление колебаний частиц в ней называется плоскостью поляризации.
  Эта плоскость может оставаться одной и той же при перемещении вдоль луча, в таком случае волна называется линейно поляризованной, а может как то менять свою ориентацию в прос

Уравнение волны
При описании волнового процесса требуется найти амплитуды и фазы колебательного движения в различных точках среды и изменение этих величин с течением времени. Эта задача может быть решена, если изв

Поток энергии в волновых процессах
    Процесс распространения волны в каком-нибудь направлении в среде сопровождается переносом энергии колебаний в этом направлении. Допустим, что S есть часть фро

Эффект Допплера.
  Разберем вопрос о том, какова связь между колебаниями, испускаемыми источником, и колебаниями, воспринимаемыми каким-либо прибором, регистрирующим колебания, если источник и прибор

Стоячие волны
  Особым примером результата интерференции двух волн служат так называемые стоячие волны, образующиеся в результате наложения двух встречных волн с одинаковыми амплитудами.

Волновое уравнение
    Из курса электричества мы уже знаем, что переменное магнитное поле создает вихревое электрическое поле. Линии этого поля замкнуты, оно существует независимо от элект

Свойства электромагнитных волн
В предыдущем параграфе мы видели, что в электромагнитной волне векторы Е и Н перпендикулярны друг другу. Но кроме того они еще и перпендикулярны напр

Энергия и импульс электромагнитного поля
  Наверное вы уже поняли, что основные свойства волн не зависят от их природы. Это касается и такого важного свойства как перенос энергии. Подобно механическим волнам, электромагнитны

Электромагнитная природа света
    С самой ранней эпохи еще до древних греков, когда, как об этом говорит легенда, Аполлон разъезжал в огненной колеснице по небу, и до наших дней, когда Тверская утопа

Естественный свет
В предыдущей главе мы назвали простейшей синусоидальную волну вида:   (2.1) где конечно ω = 2πν . Заметим здесь, такую волну называют ещ

Волновой пакет
Понятие фазовой скорости, введенное нами ранее, применимо только к строго монохроматическим волнам, которые реально не осуществимы, так как они должны были бы существовать неограниченно долго во вр

Законы отражения и преломления света
  Первые законы оптических явлений были установлены на основе представлений о прямолинейных световых лучах. Они относились к изменениям направления распространения света при отражении

Геометрическая оптика
    Устройство большого числа оптических приборов базируется на представлении о световых лучах, распространяющихся прямолинейно в однородном веществе и испытывающих отра

Увеличение
  Выберем в качестве светящегося предмета линию А1В1, перпендикулярную к оси, и построим ее изображение А2В2 (рис. 6.1). Отно

Центрированная оптическая система
Случай преломления на одной сферической поверхности сравнительно редок. Большинство реальных преломляющих систем содержит, по крайней мере, две преломляющие поверхности (линза) или большее их число

Преломление в линзе. Общая формула линзы
    Большое значение имеет простейший случай центрированной системы, состоящей всего из двух сферических поверхностей, ограничивающих какой-либо прозрачный хорошо прелом

Глаз как оптическая система
Глаз человека представляет собой сложную оптическую систему, которая по своему действию аналогична оптической системе фотоаппарата. Схематическое устройство глаза представлено на рис. 1. Глаз имеет

Фотометрические понятия и единицы
Воздействие света на глаз или какой-либо другой приемный аппарат состоит прежде всего в передаче этому регистрирующему аппарату энергии, переносимой световой волной. Поэтому, прежде чем рассматрива

Понятие о когерентности
Закон независимости световых пучков, упомянутый ранее, означает, что световые пучки, встречаясь, не воздействуют друг на друга. Это положение было ясно сформулировано Гюйгенсом, который писал в сво

Интерференция волн
  В соответствии с определением предыдущего параграфа мы говорим об интерференции волн, когда при их совместном действии не происходит суммирования интенсивностей. Условием инт

Осуществление когерентных волн в оптике
Опыт показывает, что когда два независимых источника света, например две свечи, или даже два различных участка одного и того же светящегося тела посылают световые волны в одну область пространства,

Цвета тонких пластинок
Как было выяснено ранее, при точечных источниках света будут наблюдаться резкие интерференционные картины. В таком случае при любом положении экрана, пересекающего систему поверхностей максимумов и

Кольца Ньютона
    Особый исторический интерес представляет случай интерференции в тонком воздушном слое, известный под именем колец Ньютона. Эта картина наблюдается, когда выпуклая по

Интерференция в плоскопараллельных пластинках. Полосы равного наклона
    Из соотношения Δ = 2hn cos r следует, что для плоскопараллельной однородной пластинки (h и п всюду одни и те же) разность хода может

Интерферометр Майкельсона
Рассмотрим вначале подробнее одну схему, на которой очень отчетливо выступают все наиболее существенные детали интерференционной схемы. Эта схема, известная под названием билинзы Бийе, осу

Интерференция немонохроматических световых пучков
Как уже упоминалось интерференция немонохроматического света приводит к сложной картине, состоящей из совокупности максимумов и минимумов, соответствующих разным λ,. Если λ имеет все возм

Принцип Гюйгенса — Френеля
Явления интерференции света во всем их многообразии служат убедительнейшим доказательством волновой природы световых процессов. Однако окончательная победа волновых представлений была невозможна бе

Зонная пластинка
  Хорошей иллюстрацией, подтверждающей приведенный метод рассуждения Френеля, может служить опыт с зонной пластинкой. Как следует из сказанного выше, радиус т-й зоны Френеля ра

Графическое вычисление результирующей амплитуды
  Рассмотрение вопроса о действии световой волны в точке В (см. рис. 1.4), равно как и многих других аналогичных вопросов, чрезвычайно удобно производить, пользуясь графически

Дифракция Френеля на круглом отверстии
  Применение метода Френеля позволяет предвидеть и объяснить особенности в распространении световых волн, наблюдающиеся тогда, когда часть фронта идущей волны перестает действовать вс

Дифракция Фраунгфера от щели
    До сих пор мы рассматривали дифракцию сферических или плоских воли, изучая дифракционную картину в точке наблюдения, лежащей па конечном расстоянии от препятствия. И

Дифракция на двух щелях
Рассмотрим опять явление дифракции на щели по схеме, изображенной на рис. 5.2. Положение дифракционных максимумов и минимумов не будет зависеть от положения щели, ибо положение максимумов определяе

Дифракционная решетка
  Рассмотрение дифракции на двух щелях показывает, что в этом случае дифракционные максимумы становятся более узкими, чем в случае одной щели. Увеличение числа щелей делает это явлени

Волновые поверхности в одноосном кристалле.
  Объяснение двойного лучепреломления в одноосных кристаллах было впервые дано Гюйгенсом в его „Трактате о свете" (1690 г.). Гюйгенс предположил, что обыкновенному лучу соответст

Поляризационные приборы.
    Для получения из естественного света плоско поляризованного света можно воспользоваться либо поляризацией при отражении под углом Брюстера, либо двойным лучепреломле

Интерференция поляризованных лучей. Эллиптическая и круговая поляризация.
    Лучи, обыкновенный и необыкновенный, возникающие при двойном лучепреломлении из естественного свети, не когерентны. Если естественный луч разложить па два луча, поля

Кристаллическая пластинка между николями.
  До сих пор мы рассматривали интерференцию поляризованных лучей, колебания в которых происходят во взаимно перпендикулярных направлениях. Рассмотрим теперь интерференцию двух поляриз

Искусственное двойное лучепреломление.
  В начале девятнадцатого столетия было открыто возникновение двойного лучепреломления в прозрачных изотропных телах под влиянием механической деформации. Оптическую анизотропию, появ

Двойное лучепреломление в электрическом поле.
    Другим примером искусственной анизотропии является анизотропия, возникающая в телах под влиянием электриче­ского поля. Этот вид анизотропии был открыт в 1875 г. Керр

Вращение плоскости поляризации.
    В направлении оптической оси свет распространяется в кристалле так же, как и в однородной среде, не давая двойного лучепреломления. Однако было замечено, что в крист

Магнитное вращение плоскости поляризации.
    Вещества, не обладающие естественной способностью вращать плоскость поляризации, приобретают такую способность под влиянием внешнего магнитного поля. Явление магнитн

Дисперсия света. Методы наблюдения и результаты
Любой метод, который применяется для определения показателя преломления, — преломление в призмах, полное внутреннее отражение, интерференционные приборы — может служить для обнаружения дисперсии.

Основы теории дисперсии
    Плодотворная попытка истолкования богатого материала, полученного экспериментальным путем, была сделана еще в «упругой» теории света. Хотя эта теория не могла связат

Ширина спектральных линий и затухание излучения
  Уже неоднократно указывалось, что идеальное монохроматическое излучение представляет собой фикцию и что в реальных случаях излучение всегда соответствует некоторому интервалу длин в

Прохождение света через оптически неоднородную среду
Как уже упоминалось ранее, вторичные волны, вызываемые вынужденными колебаниями электронов, рассеивают в стороны часть энергии, приносимой световой волной. Другими словами, распространение света в

Частота и поляризация – основные характеристики света в долазерной оптике
Световая волна, являющаяся волной электромагнитной, характеризуется частотой, амплитудой и поляризацией. Гармоническая (или монохроматическая) волна, распространяющаяся вдоль оси , описывается выра

Роль интенсивности света
В подавляющем числе оптических эффектов, исследованных до создания лазеров, амплитуда световой волны А все же не влияла на характер явления. В большинстве случаев количественные, а тем более

Линейный атомный осциллятор
Взаимодействие света со средой. Причины, по которым в линейной оптике характер явлении не зависит от интенсивности излучения, можно выявить, обратившись к ее теоретическим основам. Известно, что эф

Нелинейный атомный осциллятор. Нелинейные восприимчивости
Движение электрона в поле ядра — это движение в потенциальной яме, имеющей конечную глубину (рис. 1,а). Наглядным, хотя и грубым, аналогом движения электрона в поле ядра и соответству

Причины нелинейных оптических эффектов
Нелинейный отклик атомного или молекулярного осциллятора на сильное световое поле – наиболее универсальная причина нелинейных оптических эффектов. Существуют и другие причины: например, изменение п

Фотоны друг с другом непосредственно не взаимодействуют
В физике используется (и подтверждается) представления о «непосредственном взаимодействии», приводящем к рассеянию частиц друг на друге, к поглощению одних частиц другими, взаимным превращениям час

Однофотонные и многофотонные переходы
Оптические переходы разделяются на однофотонные и многофотонные. В однофотонном переходе участвует, т. е. испускается либо поглощается один фотон. В многофотонном переходе участвуют о

Виртуальный уровень.
На рисунке 1а изображены два однофотонных перехода: сначала поглощается один фотон с энергией и микрообъект переходит с уровня 1 на уровень 2, затем поглощается другой фотон и микрообъект пе

Каким образом микрообъект играет роль «посредника» в процессах преобразования «света» в «свет»?
Рассмотрим различные процессы «превращения» одних фотонов в другие фотоны. Начнем с процесса, представленного на рисунке 2. Микрообъект поглощает фотон с энергией и переходит с уровня 1

Процесс, описывающий генерацию второй гармоники.
Многофотонные процессы, в которых начальное и конечное состояния микрообъекта одинаковы, представляют для нелинейной оптики особый интерес. Выше мы рассмотрели двухфотонный процесс. Далее рассмотри

Некогерентные и когерентные процессы преобразования света в свет
В предыдущем вопросе на примере (элементарных актов взаимодействия фотонов с микрообъектом были рассмотрены различные процессы преобразования света в свет. В одних процессах переходы с поглощением

Тепловое излучение. Закон Кирхгофа
  Тепловое излучение — это электромагнитное излучение, возбуждаемое за счет энергии теплового движения атомов и молекул. Если излучающее тело не получает теплоты извне, то оно охлажда

Законы излучения абсолютно черного тела
  Спектральная плотность излучения абсолютно черного тела является универсальной функцией длины волны и температуры. Это значит, что спектральный состав и энергия излучения абсолютно

Фотоэффект
Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было в

Специальная теория относительности.
  В классической физике до появления теории относительности (1905 г.), предполагалось, что любой физический процесс, использо­ванный (как «эталонный») для измерения времени, выявляет

Преобразования Лоренца.
  Допустим, что один из законов физики, полученный относительно системы отсчета S, имеет вид f (x, y, z, t . . . )=0,   а относительно си

Следствия из преобразований теории относи­тельности.
  Рассмотрим наиболее важные следствия преобра­зований Лоренца.   а) Длина тел в разных системах. Преобразова­ния Лоренца показывают, что одно и то же

Механика теории относительности.
  Рассуждения, приведенные выше, показывают, что оптические (и электро­магнитные) явления подтверждают кинематику теории отно­сительности, вытекающую из преобразований Лоренца. Есте­с

Эффект Комптона
  Рисунок 1 Особенно отчетливо проявляются корпускулярные свойства света в явлении, которое получило название

Постулаты Бора. Опыт Франка и Герца
В предыдущем параграфе было выяснено, что ядерная модель атома в сочетании с классической механикой и электродинамикой оказалась неспособной объяснить ни устойчивость атома, ни характер атомного сп

Волновые свойства частиц. Соотношение неопределенностей.
  В 1923 году произошло примечательное событие, которое в значительной степени ускорило развитие квантовой физики. Французский физик Луи де Бройль выдвинул гипотезу об универсальности

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги