рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Тепловое излучение. Закон Кирхгофа

Тепловое излучение. Закон Кирхгофа - раздел Механика, КОЛЕБАНИЯ И ВОЛНЫ   Тепловое Излучение — Это Электромагнитное Излучение, Возбужда...

 

Тепловое излучение — это электромагнитное излучение, возбуждаемое за счет энергии теплового движения атомов и молекул. Если излучающее тело не получает теплоты извне, то оно охлаждается и его внутренняя энергия уменьшается. Тепловое излучение свойственно всем телам при температурах выше абсолютного нуля.

Если нагретое тело поместить в полость, ограниченную идеально отражающей (непроницаемой для излучения) оболочкой, то с течением времени установится статистическое равновесие: тело получает от поглощаемого излучения в единицу времени столько же энергии, сколько оно будет излучать само. При этом распределение энергии между телом и излучением с течением времени не изменяется. Устано­вившиеся в этой полости излучение, находящееся в статистическом равновесии с нагретым телом, есть равновесное тепловое излучение. Всякое другое излучение, возбуждаемое не нагреванием, а каким-либо иным способом, не приводит к установлению статистического равновесия. Например, если внутрь упомянутой выше полости поместить тело, светящееся благодаря предварительному облучению ультрафиолетовыми лучами, то свечение этого тела постепенно ослабнет и прекратится. Это произойдет потому, что поглощаемые телом лучи (находящиеся в полости благодаря отражению стенками оболочки) не способны вновь вызывать свечение тела. Таким образом, нетепловое излучение всегда неравновесно. Тепловое излучение иногда называют температурным.

При падении на поверхность какого-либо тела лучистого потока наблюдаются следующие явления:

а) часть потока отражается обратно в окружающее пространство. При этом происходит или зеркальное отражение, или поверхностное рассеяние потока в зависимости от структуры поверхности тела;

б) часть потока пройдет через тело;

в) остальная часть потока будет поглощена телом, а его энергия превратится в другие виды энергии.

Величина ρ, равная отношению лучистого потока Рρ, отраженного телом, к лучистому потоку Р, падающему на поверхность тела, называется коэффициентом отражения

 

 

 

Величина τ, равная отношению лучистого потока Рτ, прошедшего через данное тело (среду), к лучистому потоку, падающему на данное тело (среду), называется коэффициентом пропускания

 

 

 

Коэффициент пропускания характеризует прозрачность тела (среды) по отношению к падающему излучению.

Величина α , равная отношению лучистого потока Рα , поглощенного телом, к лучистому потоку, падающему на тело, называется коэффициентом поглощения тела

 

 

Из закона сохранения энергии следует, что

Рρ + Рτ + Рα = 1, поэтому ρ + τ + α = 1

 

Измерения показывают, что коэффициенты поглощения, пропускания и отражения тела зависят от длины волны λ, падающего излучения и от температуры тела, т. е.

 

α = f(λ,T); τ=φ(λ,T); ρ=F(λ,T).

 

Для монохроматичес­кого излучения они назы­ваются спектральными коэффициентами поглоще­ния, пропускания и отра­жения и обозначаются (для данной температуры тела) αλ , ρλ, τλ

На рис. 1.1 графически изображена зависимость спектрального коэффициента поглощения некоторого тела от длины волны при данной температуре Т.

При изменении температуры характер кривой α = f(λ,T)) может измениться; лучи, сильно поглощающиеся при одной температуре, могут пропускаться при другом температуре, и наоборот.

Зависимость коэффициентов α, ρ и τ от длины волны является во многих случаях физической причиной окрашенности тел, не излучающих собственного света. Если, например, тело при освещении его белым светом имеет красный цвет, то его коэффициент поглощения τ для коротковолновой (зелено-фиолетовой) части видимого спектра близок к единице, а для длинноволновой — близок к нулю; соответственно коэффициент отражения этого тела для «красных» лучей близок к единице, а для «зелено-фиолетовых» — близок к нулю.

Цвет тела существенно зависит и от спектрального состава падающего на него света. При освещении упомянутого выше тела синим светом оно будет казаться почти черным, так как синие лучи ими почти полностью поглощаются. Окраска прозрачных тел также определяется зависимостью коэффициента пропускания от длины волны.

Например, вещество, сильно поглощающее все лучи, кроме синих, будет играть роль фильтра, выделяющего из белого цвета только синие лучи. Можно подобрать различные вещества, из которых одни пропускают только красные лучи (τкр 0,8 0,9), другие — только синие (τсин 0,8 0,9) и т. д., причем остальные лучи поглощаются. Такие вещества употребляются для изготовления светофильтров. Их вводят или прямо в состав стекла, или в слой желатины (или прозрачной пластмассы), которые помещаются между двумя обычными стеклами.

Тело, которое поглощает полностью все падающие на него излучения любой длины

волны при любой температуре, называют абсолютно черным (точнее абсолютно поглощающим) телом. Его коэффициент поглощения для всех длин волн при любых температурах равен единице.

Абсолютно черных тел в природе нет, но можно указать на тело, которое по своим свойствам практически не будет отличаться от абсолютно черного. Такой моделью абсолютно черного тела является полость с очень малым отверстием (рис. 1.2). Луч, (любой длины волны), попавший внутрь такой полости, может выйти из нее обратно только после многократных отражений. При каждом отражении от стенок полости часть энергии луча поглощается и лишь ничтожная доля энергии лучей, попавших в отверстие, сможет выйти обратно; поэтому коэффициент поглощения отверстия оказывается весьма близким к единице. Такая «модель» абсолютно черного тела может быть нагрета до высоких температур; тогда из отверстия в полости выходит интенсивное излучение и отверстие будет ярко светиться (при этом оно по-прежнему остается абсолютно поглощающим). Излучение абсолютно черного тела иногда называется «черным излучением», а само тело — «полным излучателем».

Топочное устройство с «глазком» в плавильных или коксовых печах, муфельные печи с отверстием, зрачок глаза являются примерами практических абсолютно черных тел.

Встречаются тела, для которых коэффициент поглощения меньше единицы, но не зависит от длины волны. Такие тела называются «серыми». Для них α выражается прямой, ордината которой меньше единицы (см. рис. 1.1).

Рассмотрим теперь лучеиспускание различных тел. Нагретые тела излучают энергию в виде электромагнитных волн различных длин (инфракрасные, видимые и ультрафиолетовые лучи и др.).

Количество R энергии, излучаемой с 1 м2 поверхности тела за одну секунду по всем длинам волн, называется интегральной плотностью излучения.

Измерения показывают, что энергия излучения распределяется неравномерно между всеми длинами волн, которые испускаются нагретым телом. Разложим излучение нагретого тела в спектр и найдем энергии ΔRλ приходящиеся на равные узкие участки спектра шириной Δλ. Для этого можно перемещать вдоль спектра полоску зачерненной платины, которая, поглотив энергию излучения этого интервала, нагреется. Повышение же температуры может быть найдено по изменению ее сопротивления; такой прибор называется болометром.

Можно также воспользоваться термопарой, которая позволяет измерять энергию поглощеного излучения по величине возникающей термоэлектродвижущей силы. Откладывая по оси ординат величину rλT=ΔR/Δλ мы получим представление о распределении энергии по длинам волн нагретого тела. На рис. 1.3 показана сглаженная кривая, изображающая такое распределение.

Заштрихованная площадка, равная произведению rλT, показывает энергию излучения (с 1 м2 поверхности тела за одну секунду), содержащуюся в участке спектра от длины волны λ до λ + dλ

dR λ= rλT

Величина rλT называется спектральной плотностью излучения тела и является функцией распределения энергии по спектру. Она выражает собой мощность излучения с 1 м2 поверхности тела, приходящуюся на единичный интервал длин волн спектра вблизи данной волны λ..

Измерения показывают, что спектральная плотность излучения для данного тела зависит как от длины волны λ, вблизи которой взят интервал , так и от температуры тела Т.

Очевидно, что интегральная плотность излучения тела связана со спектральной плотностью излучения соотношением

 

 

 

и на рис. 1.3 изображается площадью, заключенной между кривой rλT и осью абсцисс.

Установлено, что испускательные и поглощательные спобности тел пропорциональны (например, сажа или платиновая чернь имеют большой коэффициент поглощения и большую плотность излучения; наоборот, полированное серебро обладает малым коэффициентом, поглощения и малой плотностью излучения). Эту пропорциональность можно показать, если внутрь нагретой полости (например, внутрь муфельной печи) внести фарфоровый черепок, часть которого зачернена тушью. Когда черепок нагреется и примет температуру полости, отличить темные места черепка от светлых, незачерненных, оказывается невозможным. Темные места больше поглощают, но и больше излучают, а светлые места меньше излучают, зато больше отражают. Вынув черепок из печи, мы заметим яркое свечение зачерненных мест, так как теперь они больше излучают, чем светлые места (отраженное излучение от них отсутствует, так как нет падающего излучения).

Получение света от пламени горящей свечи основано на той же пропорциональности между испускательной и поглощательной способностями тел. В пламени имеются частицы сажи, обладающие большим поглощением; они и дают яркий свет. Если пламя не содержит частиц сажи (например, пламя газовой горелки), оно не будет светиться.

Результаты экспериментальных исследований и термодинамические рассуждения привели к следующему утверждению (закон Кирхгофа):

для всех тел, независимо от их природы, отношение спектральной плотности излучения к спектральному коэффициенту поглощения при той же температуре и для тех же длин волн есть универсальная функция от длины волны и температуры.

Таким образом, за он Кирхгофа можно выразить равенством:

 

= = … = =f( λ,T)

 

где индексы 1, 2,... относятся к первому, второму и т.д. телам. Допустим, что одно из этих тел — абсолютно черное. Обозначим его спектральную плотность излучения через uλТ. Учитывая, что коэффициент поглощения абсолютно черного тела равен единице, можем написать закон Кирхгофа так:

 

= f( λ,T) (1.1)

Следовательно, универсальная функция Кирхгофа f( λ,T) есть спектральная плотность излучения абсолютно черного тела, т.е. f( λ,T) = uλТ, поэтому:

отношение спектральной плотности излучения любого тела к его спектральному коэффициенту поглощения равно спектральной плотности излучения абсолютно черного тела для той же длины волны и при той же температуре.

Из формулы (1.1) следует, что rλTλТ иλТ, а так как αλТ < 1, то rλT < иλТ. Следовательно, тепловое излучение любого тела в любой области спектра всегда меньше, чем тепловое излучение абсолютно черного тела в этой же области спектра и при то же температуре.

На рис. 1.4 даны опытные кривые распределения энергии в спектре абсолютно черного тела 1, «серого» тела 2 и произвольного тела 3. Кривая спектрального распределения для серого тела может быть получена из кривой распределения для абсолютно черного тела путем умножения ординат последней на постоянный множитель, меньший единицы и равный коэффициенту поглощения серого тела. Таково приблизительно излучение вольфрамовой проволоки в электрических лампах.

Излучение некоторых тел является селективным (избирательным). Кривая излучения 3 таких тел может иметь несколько максимумов и минимумов, по вся она лежит ниже кривой излучения абсолютно черного тела, как следует из закона Кирхгофа.

Кроме дифференциальной формы закона Кирхгофа (1.1), существует его интегральная форма: отношение интегральной плотности излучения серых тел к их коэффициенту поглощения есть универсальная (общая для всех серых тел) функция температуры

 

(1.2)

 

где R и α относятся ко всему спектру излучения при данной температуре.

Для абсолютно черного тела α = 1 при всех температурах, поэтому f(Т) есть его интегральная плотность излучения при температуре Т.

Так как для всех тел α<1, то их интегральное излучение всегда меньше, чем у абсолют черного тела. Это видно и на рис. 1.4, где площадь, ограниченная кривой излучения абсолютно черного тела, больше площади, ограниченной кривой излучения серого и любого другого тела.

 

– Конец работы –

Эта тема принадлежит разделу:

КОЛЕБАНИЯ И ВОЛНЫ

На сайте allrefs.net читайте: КОЛЕБАНИЯ И ВОЛНЫ. ВВЕДЕНИЕ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Тепловое излучение. Закон Кирхгофа

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Образование и распространение волн в упругой среде
Начнем с определения упругой среды. Как можно заключить из названия упругая среда это такая среда в которой действуют силы упругости. Применительно к нашим целям, добавим, что при любом возмущении

Линию, вдоль которой происходит распространение фронта волны, называют лучом.
  Нетрудно сообразить, что в изотропной среде луч всегда нормален (перпендикулярен) к волновой поверхности. В изотропной среде все лучи представляют собой прямые линии. Каждая прямая,

Плоскость, проходящая через луч, вдоль которого распространяется волна, и через направление колебаний частиц в ней называется плоскостью поляризации.
  Эта плоскость может оставаться одной и той же при перемещении вдоль луча, в таком случае волна называется линейно поляризованной, а может как то менять свою ориентацию в прос

Уравнение волны
При описании волнового процесса требуется найти амплитуды и фазы колебательного движения в различных точках среды и изменение этих величин с течением времени. Эта задача может быть решена, если изв

Поток энергии в волновых процессах
    Процесс распространения волны в каком-нибудь направлении в среде сопровождается переносом энергии колебаний в этом направлении. Допустим, что S есть часть фро

Эффект Допплера.
  Разберем вопрос о том, какова связь между колебаниями, испускаемыми источником, и колебаниями, воспринимаемыми каким-либо прибором, регистрирующим колебания, если источник и прибор

Стоячие волны
  Особым примером результата интерференции двух волн служат так называемые стоячие волны, образующиеся в результате наложения двух встречных волн с одинаковыми амплитудами.

Волновое уравнение
    Из курса электричества мы уже знаем, что переменное магнитное поле создает вихревое электрическое поле. Линии этого поля замкнуты, оно существует независимо от элект

Свойства электромагнитных волн
В предыдущем параграфе мы видели, что в электромагнитной волне векторы Е и Н перпендикулярны друг другу. Но кроме того они еще и перпендикулярны напр

Энергия и импульс электромагнитного поля
  Наверное вы уже поняли, что основные свойства волн не зависят от их природы. Это касается и такого важного свойства как перенос энергии. Подобно механическим волнам, электромагнитны

Электромагнитная природа света
    С самой ранней эпохи еще до древних греков, когда, как об этом говорит легенда, Аполлон разъезжал в огненной колеснице по небу, и до наших дней, когда Тверская утопа

Естественный свет
В предыдущей главе мы назвали простейшей синусоидальную волну вида:   (2.1) где конечно ω = 2πν . Заметим здесь, такую волну называют ещ

Волновой пакет
Понятие фазовой скорости, введенное нами ранее, применимо только к строго монохроматическим волнам, которые реально не осуществимы, так как они должны были бы существовать неограниченно долго во вр

Законы отражения и преломления света
  Первые законы оптических явлений были установлены на основе представлений о прямолинейных световых лучах. Они относились к изменениям направления распространения света при отражении

Геометрическая оптика
    Устройство большого числа оптических приборов базируется на представлении о световых лучах, распространяющихся прямолинейно в однородном веществе и испытывающих отра

Увеличение
  Выберем в качестве светящегося предмета линию А1В1, перпендикулярную к оси, и построим ее изображение А2В2 (рис. 6.1). Отно

Центрированная оптическая система
Случай преломления на одной сферической поверхности сравнительно редок. Большинство реальных преломляющих систем содержит, по крайней мере, две преломляющие поверхности (линза) или большее их число

Преломление в линзе. Общая формула линзы
    Большое значение имеет простейший случай центрированной системы, состоящей всего из двух сферических поверхностей, ограничивающих какой-либо прозрачный хорошо прелом

Глаз как оптическая система
Глаз человека представляет собой сложную оптическую систему, которая по своему действию аналогична оптической системе фотоаппарата. Схематическое устройство глаза представлено на рис. 1. Глаз имеет

Фотометрические понятия и единицы
Воздействие света на глаз или какой-либо другой приемный аппарат состоит прежде всего в передаче этому регистрирующему аппарату энергии, переносимой световой волной. Поэтому, прежде чем рассматрива

Понятие о когерентности
Закон независимости световых пучков, упомянутый ранее, означает, что световые пучки, встречаясь, не воздействуют друг на друга. Это положение было ясно сформулировано Гюйгенсом, который писал в сво

Интерференция волн
  В соответствии с определением предыдущего параграфа мы говорим об интерференции волн, когда при их совместном действии не происходит суммирования интенсивностей. Условием инт

Осуществление когерентных волн в оптике
Опыт показывает, что когда два независимых источника света, например две свечи, или даже два различных участка одного и того же светящегося тела посылают световые волны в одну область пространства,

Цвета тонких пластинок
Как было выяснено ранее, при точечных источниках света будут наблюдаться резкие интерференционные картины. В таком случае при любом положении экрана, пересекающего систему поверхностей максимумов и

Кольца Ньютона
    Особый исторический интерес представляет случай интерференции в тонком воздушном слое, известный под именем колец Ньютона. Эта картина наблюдается, когда выпуклая по

Интерференция в плоскопараллельных пластинках. Полосы равного наклона
    Из соотношения Δ = 2hn cos r следует, что для плоскопараллельной однородной пластинки (h и п всюду одни и те же) разность хода может

Интерферометр Майкельсона
Рассмотрим вначале подробнее одну схему, на которой очень отчетливо выступают все наиболее существенные детали интерференционной схемы. Эта схема, известная под названием билинзы Бийе, осу

Интерференция немонохроматических световых пучков
Как уже упоминалось интерференция немонохроматического света приводит к сложной картине, состоящей из совокупности максимумов и минимумов, соответствующих разным λ,. Если λ имеет все возм

Принцип Гюйгенса — Френеля
Явления интерференции света во всем их многообразии служат убедительнейшим доказательством волновой природы световых процессов. Однако окончательная победа волновых представлений была невозможна бе

Зонная пластинка
  Хорошей иллюстрацией, подтверждающей приведенный метод рассуждения Френеля, может служить опыт с зонной пластинкой. Как следует из сказанного выше, радиус т-й зоны Френеля ра

Графическое вычисление результирующей амплитуды
  Рассмотрение вопроса о действии световой волны в точке В (см. рис. 1.4), равно как и многих других аналогичных вопросов, чрезвычайно удобно производить, пользуясь графически

Дифракция Френеля на круглом отверстии
  Применение метода Френеля позволяет предвидеть и объяснить особенности в распространении световых волн, наблюдающиеся тогда, когда часть фронта идущей волны перестает действовать вс

Дифракция Фраунгфера от щели
    До сих пор мы рассматривали дифракцию сферических или плоских воли, изучая дифракционную картину в точке наблюдения, лежащей па конечном расстоянии от препятствия. И

Дифракция на двух щелях
Рассмотрим опять явление дифракции на щели по схеме, изображенной на рис. 5.2. Положение дифракционных максимумов и минимумов не будет зависеть от положения щели, ибо положение максимумов определяе

Дифракционная решетка
  Рассмотрение дифракции на двух щелях показывает, что в этом случае дифракционные максимумы становятся более узкими, чем в случае одной щели. Увеличение числа щелей делает это явлени

Волновые поверхности в одноосном кристалле.
  Объяснение двойного лучепреломления в одноосных кристаллах было впервые дано Гюйгенсом в его „Трактате о свете" (1690 г.). Гюйгенс предположил, что обыкновенному лучу соответст

Поляризационные приборы.
    Для получения из естественного света плоско поляризованного света можно воспользоваться либо поляризацией при отражении под углом Брюстера, либо двойным лучепреломле

Интерференция поляризованных лучей. Эллиптическая и круговая поляризация.
    Лучи, обыкновенный и необыкновенный, возникающие при двойном лучепреломлении из естественного свети, не когерентны. Если естественный луч разложить па два луча, поля

Кристаллическая пластинка между николями.
  До сих пор мы рассматривали интерференцию поляризованных лучей, колебания в которых происходят во взаимно перпендикулярных направлениях. Рассмотрим теперь интерференцию двух поляриз

Искусственное двойное лучепреломление.
  В начале девятнадцатого столетия было открыто возникновение двойного лучепреломления в прозрачных изотропных телах под влиянием механической деформации. Оптическую анизотропию, появ

Двойное лучепреломление в электрическом поле.
    Другим примером искусственной анизотропии является анизотропия, возникающая в телах под влиянием электриче­ского поля. Этот вид анизотропии был открыт в 1875 г. Керр

Вращение плоскости поляризации.
    В направлении оптической оси свет распространяется в кристалле так же, как и в однородной среде, не давая двойного лучепреломления. Однако было замечено, что в крист

Магнитное вращение плоскости поляризации.
    Вещества, не обладающие естественной способностью вращать плоскость поляризации, приобретают такую способность под влиянием внешнего магнитного поля. Явление магнитн

Дисперсия света. Методы наблюдения и результаты
Любой метод, который применяется для определения показателя преломления, — преломление в призмах, полное внутреннее отражение, интерференционные приборы — может служить для обнаружения дисперсии.

Основы теории дисперсии
    Плодотворная попытка истолкования богатого материала, полученного экспериментальным путем, была сделана еще в «упругой» теории света. Хотя эта теория не могла связат

Поглощение (абсорбция) света
Прохождение света через вещество ведет к возникновению колебаний электронов среды под действием электромагнитного поля волны и сопровождается потерей энергии последней, затрачиваемой на возбуждение

Ширина спектральных линий и затухание излучения
  Уже неоднократно указывалось, что идеальное монохроматическое излучение представляет собой фикцию и что в реальных случаях излучение всегда соответствует некоторому интервалу длин в

Прохождение света через оптически неоднородную среду
Как уже упоминалось ранее, вторичные волны, вызываемые вынужденными колебаниями электронов, рассеивают в стороны часть энергии, приносимой световой волной. Другими словами, распространение света в

Частота и поляризация – основные характеристики света в долазерной оптике
Световая волна, являющаяся волной электромагнитной, характеризуется частотой, амплитудой и поляризацией. Гармоническая (или монохроматическая) волна, распространяющаяся вдоль оси , описывается выра

Роль интенсивности света
В подавляющем числе оптических эффектов, исследованных до создания лазеров, амплитуда световой волны А все же не влияла на характер явления. В большинстве случаев количественные, а тем более

Линейный атомный осциллятор
Взаимодействие света со средой. Причины, по которым в линейной оптике характер явлении не зависит от интенсивности излучения, можно выявить, обратившись к ее теоретическим основам. Известно, что эф

Нелинейный атомный осциллятор. Нелинейные восприимчивости
Движение электрона в поле ядра — это движение в потенциальной яме, имеющей конечную глубину (рис. 1,а). Наглядным, хотя и грубым, аналогом движения электрона в поле ядра и соответству

Причины нелинейных оптических эффектов
Нелинейный отклик атомного или молекулярного осциллятора на сильное световое поле – наиболее универсальная причина нелинейных оптических эффектов. Существуют и другие причины: например, изменение п

Фотоны друг с другом непосредственно не взаимодействуют
В физике используется (и подтверждается) представления о «непосредственном взаимодействии», приводящем к рассеянию частиц друг на друге, к поглощению одних частиц другими, взаимным превращениям час

Однофотонные и многофотонные переходы
Оптические переходы разделяются на однофотонные и многофотонные. В однофотонном переходе участвует, т. е. испускается либо поглощается один фотон. В многофотонном переходе участвуют о

Виртуальный уровень.
На рисунке 1а изображены два однофотонных перехода: сначала поглощается один фотон с энергией и микрообъект переходит с уровня 1 на уровень 2, затем поглощается другой фотон и микрообъект пе

Каким образом микрообъект играет роль «посредника» в процессах преобразования «света» в «свет»?
Рассмотрим различные процессы «превращения» одних фотонов в другие фотоны. Начнем с процесса, представленного на рисунке 2. Микрообъект поглощает фотон с энергией и переходит с уровня 1

Процесс, описывающий генерацию второй гармоники.
Многофотонные процессы, в которых начальное и конечное состояния микрообъекта одинаковы, представляют для нелинейной оптики особый интерес. Выше мы рассмотрели двухфотонный процесс. Далее рассмотри

Некогерентные и когерентные процессы преобразования света в свет
В предыдущем вопросе на примере (элементарных актов взаимодействия фотонов с микрообъектом были рассмотрены различные процессы преобразования света в свет. В одних процессах переходы с поглощением

Законы излучения абсолютно черного тела
  Спектральная плотность излучения абсолютно черного тела является универсальной функцией длины волны и температуры. Это значит, что спектральный состав и энергия излучения абсолютно

Фотоэффект
Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было в

Специальная теория относительности.
  В классической физике до появления теории относительности (1905 г.), предполагалось, что любой физический процесс, использо­ванный (как «эталонный») для измерения времени, выявляет

Преобразования Лоренца.
  Допустим, что один из законов физики, полученный относительно системы отсчета S, имеет вид f (x, y, z, t . . . )=0,   а относительно си

Следствия из преобразований теории относи­тельности.
  Рассмотрим наиболее важные следствия преобра­зований Лоренца.   а) Длина тел в разных системах. Преобразова­ния Лоренца показывают, что одно и то же

Механика теории относительности.
  Рассуждения, приведенные выше, показывают, что оптические (и электро­магнитные) явления подтверждают кинематику теории отно­сительности, вытекающую из преобразований Лоренца. Есте­с

Эффект Комптона
  Рисунок 1 Особенно отчетливо проявляются корпускулярные свойства света в явлении, которое получило название

Постулаты Бора. Опыт Франка и Герца
В предыдущем параграфе было выяснено, что ядерная модель атома в сочетании с классической механикой и электродинамикой оказалась неспособной объяснить ни устойчивость атома, ни характер атомного сп

Волновые свойства частиц. Соотношение неопределенностей.
  В 1923 году произошло примечательное событие, которое в значительной степени ускорило развитие квантовой физики. Французский физик Луи де Бройль выдвинул гипотезу об универсальности

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги