Закон Максвелла распределения молекул по скоростям теплового движения

Закон Максвелла описывается некоторой функцией f(v), называемой функцией распределения молекул по скоростям. Если разбить диапазон скоростей молекул на

малые интервалы, равные dv, то на каждый интервал скорости будет приходиться некоторое число молекул dN(v), имеющих скорость, заключенную в этом интервале. Функция f(v) определяет относительное число молекул dN (v)/N, скорости которых лежат в интервале от v до v+dv, т. е.

откуда f(v)=dN(v)/Ndv.

Применяя методы теории вероятностей, Максвелл нашел функцию f(v) — закон для распределения молекул идеального газа по скоростям:

 

Из (44.1) видно, что конкретный вид функции зависит от рода газа (от массы молекулы) и от параметра состояния (от температуры Т).График функции (44.1) приведен на рис. Так как при возрастании v множитель уменьшается быстрее, чем растет множитель v2, то функция f(v), начинаясь от нуля, достигает максимума при vв и затем асимптотически стремится к нулю. Кривая несимметрична относительно vв.

Барометрическая формула. Распределение Больцмана

Выражение (45.2) называется барометри­ческой формулой.Она позволяет найти атмосферное давление в зависимости от высоты или, измерив давление, найти вы­соту. Так как высоты обозначаются отно­сительно уровня моря, где давление счита­ется нормальным, то выражение (45.2) может быть записано в виде

где р — давление на высоте h.

Прибор для определения высоты над земной поверхностью называется высото­мером(или альтиметром).Его работа ос­нована на использовании формулы (45.3). Из этой формулы следует, что давление с высотой убывает тем быстрее, чем тяже­лее газ.

Барометрическую формулу (45.3) можно преобразовать, если воспользо­ваться выражением (42.6) p=nkT:

где n — концентрация молекул на высо­те h, n0 — то же на высоте h=0. Так как M = m0NA (NA— постоянная Авогадро, m0масса одной молекулы), а R=kNA, то

где m0gh=П — потенциальная энергия молекулы в поле тяготения, т. е.

Выражение (45.5) называется распре­делением Больцманаво внешнем потенци­альном поле. Из него следует, что при постоянной температуре плотность газа больше там, где меньше потенциальная энергия его молекул.

32. Среднее число столкновений и средняя длина свободного движения молекул.

Молекулы газа, находясь в состоянии хао­тического движения, непрерывно сталки­ваются друг с другом. Между двумя по­следовательными столкновениями молеку­лы проходят некоторый путь l, который называется длиной свободного пробега.В общем случае длина пути между по­следовательными столкновениями различ­на, но так как мы имеем дело с огромным числом молекул и они находятся в бес­порядочном движении, то можно говорить о средней длине свободного пробега моле­кул<l>.

Минимальное расстояние, на которое сближаются при столкновении центры двух молекул, называется эффективным диаметром молекулыd (рис.68). Он за­висит от скорости сталкивающихся моле­кул, т. е. от температуры газа (несколько уменьшается с ростом температуры).

Так как за 1 с молекула проходит в среднем путь, равный средней арифметической скорости <v>, и если (z) —сред­нее число столкновений, испытываемых одной молекулой газа за 1 с, то средняя длина свободного пробега

 

<l>=<v>/<z>.

Для определения <z> представим себе молекулу в виде шарика диаметром d, которая движется среди других «застыв­ших» молекул. Эта молекула столкнется только с теми молекулами, центры кото­рых находятся на расстояниях, рав­ных или меньших d, т. е. лежат внутри «ломаного» цилиндра радиусом d.

Среднее число столкновений за 1 с равно числу молекул в объеме «ломано­го» цилиндра:

<z>=nV,

где n — концентрация молекул, V = = pd2<v> (<v> —средняя скорость мо­лекулы или путь, пройденный ею за 1с). Таким образом, среднее число столкновений

<z>=npd2<v>.

Расчеты показывают, что при учете дви­жения других молекул

Тогда средняя длина свободного про­бега

т.е. (l) обратно пропорциональна кон­центрации n молекул. С другой стороны, из (42.6) следует, что при постоянной температуре n пропорциональна давлению р.

Следовательно,

 

33. Явления переноса. Диффузия, вязкость, теплопроводность.

В термодинамически неравновесных систе­мах возникают особые необратимые про­цессы, называемые явлениями переноса,в результате которых происходит пространственный перенос энергии, массы, импульса. К явлениям переноса относятся теплопроводность(обусловлена переносом энергии), диффузия(обусловлена перено­сом массы) и внутреннее трение(обуслов­лено переносом импульса). Для простоты ограничимся одномерными явлениями пе­реноса. Систему отсчета будем выбирать так, чтобы ось х была ориентирована в на­правлении переноса.

1. Теплопроводность.Если в одной об­ласти газа средняя кинетическая энергия молекул больше, чем в другой, то с течени­ем времени вследствие постоянных стол­кновений молекул происходит процесс вы­равнивания средних кинетических энергий молекул, т. е., иными словами, выравнива­ние температур.

Перенос энергии в форме теплоты под­чиняется закону Фурье:

где jEплотность теплового потока —величина, определяемая энергией, перено­симой в форме теплоты в единицу времени через единичную площадку, перпендикулярную оси х, l теплопроводность,dT/dx — градиент температуры, равный скоро­сти изменения температуры на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что при теплопроводности энергия переносит­ся в направлении убывания температуры

(поэтому знаки jЕ и dT/dx противополож­ны). Теплопроводность l, численно равна плотности теплового потока при градиенте температуры, равном единице. Можно показать, что

где Сv удельная теплоемкость газа при постоянном объеме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объеме), r — плот­ность газа, (v) —средняя скорость теп­лового движения молекул, <l> — средняя длина свободного пробега.

2. Диффузия.Явление диффузии за­ключается в том, что происходит самопро­извольное проникновение и перемешива­ние частиц двух соприкасающихся газов, жидкостей и даже твердых тел; диффузия сводится к обмену масс частиц этих тел, возникает и продолжается, пока су­ществует градиент плотности.

Явление диффузии для химически од­нородного газа подчиняется закону Фика:

jm=-Ddp/dx (48.3)

где jт — плотность потока массы —ве­личина, определяемая массой вещества, диффундирующего в единицу времени че­рез единичную площадку, перпендикуляр­ную оси х,D — диффузия (коэффициент диффузии),dr/dx—градиент плотности, равный скорости изменения плотности на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что перенос массы происходит в направле­нии убывания плотности (поэтому знаки jт и dr/dx противоположны). Диффузия D численно равна плотности потока массы при градиенте плотности, равном единице. Согласно кинетической теории газов,

D=1/3 <v> <l>. (48.4)

3. Внутреннее трение (вязкость).Ме­ханизм возникновения внутреннего трения между параллельными слоями газа (жид­кости), движущимися с различными ско­ростями, заключается в том, что из-за хаотического теплового движения проис­ходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, движущегося медленнее — увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее.

Сила внут­реннего трения между двумя слоями газа (жидкости) подчиняется закону Ньютона:

где h — динамическая вязкость (вязкость), dv/dx — градиент скорости, показывающий быстроту изменения скорости в направлении х, перпендикулярном на­правлению движения слоев, S — площадь, на которую действует сила F.

Динамическая вязкость h численно равна плотности потока импульса при гра­диенте скорости, равном единице; она вы­числяется по формуле

 

Из сопоставления формул описывающих явления переноса, следует, что закономерности всех явлений переноса сходны между со­бой. Рассмотренные законы Фурье, Фика и Ньютона не вскрывают молекулярно-кинетического смысла коэффициентов l, D и h. Формулы (48.2), (48.4) и (48.7) связывают коэффициенты перено­са и характеристики теплового движения молекул. Из этих формул вытекают про­стые зависимости между l, D и h:

 

34. Первый закон термодинамики. Работа, теплота, теплоемкость, ее виды.

Допустим, что некоторая система (газ, заключенный в цилиндр под поршнем), обладая внутренней энергией U1, получи­ла некоторое количество теплоты Q и, перейдя в новое состояние, характеризую­щееся внутренней энергией U2, совершила работу А над внешней средой, т. е. против внешних сил. Количество теплоты считает­ся положительным, когда оно подводится к системе, а работа — положительной, когда система совершает ее против внеш­них сил. Опыт показывает, что в соответ­ствии с законом сохранения энергии при любом способе перехода системы из перво­го состояния во второе изменение внутрен­ней энергии DU=U2-U1 будет одинако­вым и равным разности между количест­вом теплоты Q, полученным системой, и работой А, совершенной системой про­тив внешних сил:

DU=Q-A,

или

Q=DU+A. (51.1)

Уравнение (51.1) выражает первое начало термодинамики:теплота, сообщаемая системе, расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил.

Выражение (51.1) в дифференциаль­ной форме будет иметь вид

dQ=dU+dA,

где dU — бесконечно малое изменение внутренней энергии системы.