рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Теплота

Теплота - раздел Механика, Скорость движения Средняя путевая скорость Мгновенная скорость/ скорость движения Теплота - Один Из Двух, Известных Современному Естествознанию, Способов Перед...

Теплота - один из двух, известных современному естествознанию, способов передачи энергии - мера передачи неупорядоченного движения. Количество переданной энергии называют количеством теплоты.

а) изохорный процесс (V=const)

б) изобарный процесс (p=const)

в) изотермическом (T=const)

Теплоёмкость тела (обозначается C) — физическая величина, определяющая отношение бесконечно малого количества теплоты ΔQ, полученного телом, к соответствующему приращению его температуры ΔT:

Единица измерения теплоёмкости в системе СИ — Дж/К.

Удельная теплоемкость веществаве­личина, равная количеству теплоты, не­обходимому для нагревания 1 кг вещест­ва на 1 К:

Единица удельной теплоемкости — джоуль на килограмм-кельвин (Дж/(кг•К)).

Молярная теплоемкость—величина, равная количеству теплоты, необходимому для нагревания 1 моля вещества на 1 К:

где v = m/M — количество вещества, вы­ражающее число молей.

Единица молярной теплоемкости — джоуль на моль-кельвин (Дж/(моль•К)).

Удельная теплоемкость с связана с мо­лярной Сm соотношением

Ст = сМ, (53.2)

где М — молярная масса вещества.

Понятие теплоёмкости определено как для веществ в различных агрегатных состояниях (твёрдых тел, жидкостей, газов), так и для ансамблей частиц и квазичастиц (в физике металлов, например, говорят о теплоёмкости электронного газа). Если речь идёт не о каком-либо теле, а о некотором веществе как таковом, то различают удельную теплоёмкость — теплоёмкость единицы массы этого вещества и молярную — теплоёмкость одного моля его.

Для примера, в молекулярно-кинетической теории газов показывается, что молярная теплоёмкость идеального газа с i степенями свободы при постоянном объеме равна:

А при постоянном давлении

 

35. Политропный процесс, его частные случаи: изобарный, изотермический, адиабатный, изохорный.

Процесс, в ко­тором теплоемкость остается постоянной, называется политропным.

Исходя из первого начала термодина­мики при условии постоянства теплоемко­сти (C = const) можно вывести уравнение политропы:

pVn = const, (55.9) где n=(C-Ср)/(С-Cv) — показатель политропы. Очевидно, что при С = 0, n=g из (55.9) получается уравнение адиабаты; при С=¥, n =1 —уравнение изотермы; при С=СР, n = 0уравнение изобары, при С = Сv, n=±¥ —уравнение изохоры.

Среди равновесных процессов, происходя­щих с термодинамическими системами, выделяются изопроцессы,при которых один из основных параметров состояния сохраняется постоянным.

Изохорный процесс(V = const). Диаг­рамма этого процесса (изохора)в коорди­натах р, V изображается прямой, парал­лельной оси ординат (рис. 81), где процесс 12 есть изохорное нагревание, а 13 — изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т. е.

dA=pdV = 0.

Как уже указывалось в § 53, из первого начала термодинамики (dQ=dU+dA) для изохорного процесса следует, что вся теп­лота, сообщаемая газу, идет на увеличе­ние его внутренней энергии:

dQ =dU

Согласно формуле (53.4), dUm = CvdT.

Тогда для произвольной массы газа по­лучим

Изобарный процесс(р=const). Диаграмма этого процесса (изобара)в координатах р, V изображается прямой, парал­лельной оси V

 

. При изобарном процессе работа газа при расширении объема от V1 до V2 равна

и определяется площадью прямоугольни­ка, выполненного в цвете на рис. 82. Если использовать уравнение Клапейро­на — Менделеева для выбранных нами двух состояний, то

откуда

Тогда выражение (54.2) для работы изо­барного расширения примет вид

Из этого выражения вытекает физический смысл молярной газовой постоянной R: если T2-T1=1К, то для 1 моля газа R=А, т. е. R численно равна работе изо­барного расширения 1 моля идеального газа при нагревании его на 1 К.

В изобарном процессе при сообщении газу массой от количества теплоты

его внутренняя энергия возрастает на ве­личину (согласно формуле (53.4))

При этом газ совершит работу, определяе­мую выражением (54.3).

 

Изотермический процесс(T=const). Изотермиче­ский процесс описывается законом Бой­ля — Мариотта:

pV=const.

Диаграмма этого процесса (изотерма)в координатах р, V представляет собой гиперболу, расположенную на диаграмме тем выше, чем выше темпе­ратура, при которой происходил процесс. Найдем работу изотермического расшире­ния газа:

 

Так как при T=const внутренняя энергия идеального газа не изменяется:

то из первого начала термодинамики (dQ =dU+dA) следует, что для изотермиче­ского процесса

dQ=dA,

т. е. все количество теплоты, сообщаемое газу, расходуется на совершение им рабо­ты против внешних сил:

Следовательно, для того чтобы при рабо­те расширения температура не уменьша­лась, к газу в течение изотермического процесса необходимо подводить количест­во теплоты, эквивалентное внешней работе расширения.

Адиабатический процесс. Политропный процесс

Адиабатическимназывается процесс, при котором отсутствует теплообмен (dQ=0) между системой и окружающей средой. К адиабатическим процессам можно отнести все быстропротекающие процессы. Например, адиабатическим процессом можно считать процесс распространения звука в среде, так как скорость распро­странения звуковой волны настолько вели­ка, что обмен энергией между волной и средой произойти не успевает. Адиаба­тические процессы применяются в двига­телях внутреннего сгорания (расширение и сжатие горючей смеси в цилиндрах), в холодильных установках и т. д.

Из первого начала термодинамики (dQ=dU+dA) для адиабатического про­цесса следует, что

dA=-dU, (55.1)

т. е. внешняя работа совершается за счет изменения внутренней энергии системы.

Для произвольной массы газа перепишем уравнение (55.1) в виде

Продифференцировав уравнение состоя­ния для идеального газа pV=(m/M)RT, получим

Исключим из (55.2) и (55.3) температу­ру Т:

Разделив переменные и учитывая, что Срv =g найдем

dp/p=-gdV/V.

Интегрируя это уравнение в пределах от р1 до р2 и соответственно от V1 до V2, а затем потенцируя, придем к выражению

p2/pl=(V1/V2)g.

или

p1vg1 = p2vg2.

Так как состояния 1 и 2 выбраны про­извольно, то можно записать

рVg=const. (55.4)

Полученное выражение есть уравнение адиабатического процесса, называемое также уравнением Пуассона.

36. Второй закон термодинамики. Энтропия. Тепловые двигатели и холодильные машины. Цикл Карно.

Второе начало термодинамикиможно сформулиро­вать как закон возрастания энтропиизам­кнутой системы при необратимых процес­сах: любой необратимый процесс в замкну­той системе происходит так, что энтропия системы при этом возрастает.

Можно дать более краткую формули­ровку второго начала термодинамики: в процессах, происходящих в замкнутой системе, энтропия не убывает. Здесь су­щественно, что речь идет о замкнутых системах, так как в незамкнутых системах энтропия может вести себя любым обра­зом (убывать, возрастать, оставаться по­стоянной). Кроме того, отметим еще раз, что энтропия остается постоянной в за­мкнутой системе только при обратимых процессах. При необратимых процессах в замкнутой системе энтропия всегда воз­растает.

Формула Больцмана S = klnW, где k — постоянная Больцмана, позволяет объяснить постулируемое вторым началом термодинамики возрастание энтропии в замкнутой системе при необратимых процессах: возрастание энтропии означает переход системы из менее вероятных в бо­лее вероятные состояния. Таким образом, формула Больцмана позволяет дать стати­стическое толкование второго начала термодинамики. Оно, являясь статистиче­ским законом, описывает закономерности хаотического движения большого числа частиц, составляющих замкнутую систе­му.

– Конец работы –

Эта тема принадлежит разделу:

Скорость движения Средняя путевая скорость Мгновенная скорость/ скорость движения

Кинема тика точки раздел кинематики изучающий математическое описание движения материальных точек Основной задачей кинематики является... Основная задача механики определить положение тела в любой момент времени... Механическое движение это изменение положения тела в пространстве с течением времени относительно других тел...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Теплота

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Равномерное прямолинейное движение
Равномерным прямолинейным движением называется такое прямолинейное движение, при котором материальная точка (тело) движется по прямой и в любые равные промежутки времени совершает одинаковые переме

Равнопеременное прямолинейное движение
Равнопеременным называется движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково, т.е. на равные величины. Это движение может быть равноус

Связь между линейными и угловыми величинами, характеризующими движение
Отдельные точки вращающегося тела имеют различные линейные скорости v, которые непрерывно изменяют свое направление и зависят от угловой скорости ω и расстояния r соответствующей точки до оси

Закон Сохранения Импульса
Для вывода закона сохранения импульса рассмотрим некоторые понятия. Совокуп­ность материальных точек (тел), рассмат­риваемых как единое целое, называется механической системой.Силы

Кинетическая энергия твердого тела, совершающая одновременно поступательное и вращательное движение
Вращательное движение При вращении вокруг неподвижной оси

Космические скорости.
Первая космическая скорость — скорость, которую необходимо придать баллистическому снаряду, пренебрегая сопротивлением атмосферы и вращением планеты, чтобы поместить его на кругову

Вязкость газов
В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле где

Вязкость жидкостей
Внутреннее трение жидкостей, как и газов, возникает при движении жидкости вследствие переноса импульса в направлении, перпендикулярном к направлению движения. Общий закон внутреннего трения — закон

Единицы измерения жесткости, или модуля Юнга
Поскольку модуль Юнга представляет собой отношение напряжения к безразмерной величине, то размерность его та же, что и у напряжения, например МН/м2 или кгс/см2. Формально моду

Скорость и ускорение при гармонических колебаниях.
Колебания, при которых изменения физических величин происходят по закону косинуса или синуса (гармоническому закону), наз. гармоническими колебаниями. Согласно определению

Векторные диаграммы для представления гармонических колебаний.
Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Гармонические колебания - колебания, при кот

Пружинный маятник
Колебательная система в этом случае представляет собой совокупность некоторого тела и прикрепленной к нему пружины. Пружина может располагаться либо вертикально (вертикальный пружинный маятник), ли

Свободные колебания пружинного маятника имеют следующие причины.
1. Действие на тело силы упругости, пропорциональной смещению тела х от положения равновесия и направленной всегда к этому положению. 2. Инертность колеблющегося тела, благодаря которой он

Физический маятник
Физический маятник - твердое тело, совершающее колебания в гравитационном поле вокруг горизонтальной оси подвеса, расположенной выше его центра тяжести.   Положение равновеси

Сложения колебаний одинаковой частоты
векторная диаграмма сложения колебаний:

Сложение колебаний разной частоты
 

Энергия упругой волны
  вектор плотности потока энергии физического поля; численно равен энер

Закон Максвелла распределения молекул по скоростям теплового движения
Закон Максвелла описывается некоторой функцией f(v), называемой функцией распределения молекул по скоростям. Если разбить диапазон скоростей молекул на малые интервалы, равные dv, то на ка

Тепловые двигатели и холодильные машины. Цикл Карно.
Цикл Карно́— идеальный термодинамический цикл. Тепловая машина Карно, работающая

Термическое уравнение состояния
Термическим уравнением состояния (или, часто, просто уравнением состояния) называется связь между давлением, объёмом и температурой. Для одного моля газа Ван-дер-Ваальса оно имеет вид:

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги