Теплота

Теплота - один из двух, известных современному естествознанию, способов передачи энергии - мера передачи неупорядоченного движения. Количество переданной энергии называют количеством теплоты.

а) изохорный процесс (V=const)

б) изобарный процесс (p=const)

в) изотермическом (T=const)

Теплоёмкость тела (обозначается C) — физическая величина, определяющая отношение бесконечно малого количества теплоты ΔQ, полученного телом, к соответствующему приращению его температуры ΔT:

Единица измерения теплоёмкости в системе СИ — Дж/К.

Удельная теплоемкость веществаве­личина, равная количеству теплоты, не­обходимому для нагревания 1 кг вещест­ва на 1 К:

Единица удельной теплоемкости — джоуль на килограмм-кельвин (Дж/(кг•К)).

Молярная теплоемкость—величина, равная количеству теплоты, необходимому для нагревания 1 моля вещества на 1 К:

где v = m/M — количество вещества, вы­ражающее число молей.

Единица молярной теплоемкости — джоуль на моль-кельвин (Дж/(моль•К)).

Удельная теплоемкость с связана с мо­лярной Сm соотношением

Ст = сМ, (53.2)

где М — молярная масса вещества.

Понятие теплоёмкости определено как для веществ в различных агрегатных состояниях (твёрдых тел, жидкостей, газов), так и для ансамблей частиц и квазичастиц (в физике металлов, например, говорят о теплоёмкости электронного газа). Если речь идёт не о каком-либо теле, а о некотором веществе как таковом, то различают удельную теплоёмкость — теплоёмкость единицы массы этого вещества и молярную — теплоёмкость одного моля его.

Для примера, в молекулярно-кинетической теории газов показывается, что молярная теплоёмкость идеального газа с i степенями свободы при постоянном объеме равна:

А при постоянном давлении

 

35. Политропный процесс, его частные случаи: изобарный, изотермический, адиабатный, изохорный.

Процесс, в ко­тором теплоемкость остается постоянной, называется политропным.

Исходя из первого начала термодина­мики при условии постоянства теплоемко­сти (C = const) можно вывести уравнение политропы:

pVn = const, (55.9) где n=(C-Ср)/(С-Cv) — показатель политропы. Очевидно, что при С = 0, n=g из (55.9) получается уравнение адиабаты; при С=¥, n =1 —уравнение изотермы; при С=СР, n = 0уравнение изобары, при С = Сv, n=±¥ —уравнение изохоры.

Среди равновесных процессов, происходя­щих с термодинамическими системами, выделяются изопроцессы,при которых один из основных параметров состояния сохраняется постоянным.

Изохорный процесс(V = const). Диаг­рамма этого процесса (изохора)в коорди­натах р, V изображается прямой, парал­лельной оси ординат (рис. 81), где процесс 12 есть изохорное нагревание, а 13 — изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т. е.

dA=pdV = 0.

Как уже указывалось в § 53, из первого начала термодинамики (dQ=dU+dA) для изохорного процесса следует, что вся теп­лота, сообщаемая газу, идет на увеличе­ние его внутренней энергии:

dQ =dU

Согласно формуле (53.4), dUm = CvdT.

Тогда для произвольной массы газа по­лучим

Изобарный процесс(р=const). Диаграмма этого процесса (изобара)в координатах р, V изображается прямой, парал­лельной оси V

 

. При изобарном процессе работа газа при расширении объема от V1 до V2 равна

и определяется площадью прямоугольни­ка, выполненного в цвете на рис. 82. Если использовать уравнение Клапейро­на — Менделеева для выбранных нами двух состояний, то

откуда

Тогда выражение (54.2) для работы изо­барного расширения примет вид

Из этого выражения вытекает физический смысл молярной газовой постоянной R: если T2-T1=1К, то для 1 моля газа R=А, т. е. R численно равна работе изо­барного расширения 1 моля идеального газа при нагревании его на 1 К.

В изобарном процессе при сообщении газу массой от количества теплоты

его внутренняя энергия возрастает на ве­личину (согласно формуле (53.4))

При этом газ совершит работу, определяе­мую выражением (54.3).

 

Изотермический процесс(T=const). Изотермиче­ский процесс описывается законом Бой­ля — Мариотта:

pV=const.

Диаграмма этого процесса (изотерма)в координатах р, V представляет собой гиперболу, расположенную на диаграмме тем выше, чем выше темпе­ратура, при которой происходил процесс. Найдем работу изотермического расшире­ния газа:

 

Так как при T=const внутренняя энергия идеального газа не изменяется:

то из первого начала термодинамики (dQ =dU+dA) следует, что для изотермиче­ского процесса

dQ=dA,

т. е. все количество теплоты, сообщаемое газу, расходуется на совершение им рабо­ты против внешних сил:

Следовательно, для того чтобы при рабо­те расширения температура не уменьша­лась, к газу в течение изотермического процесса необходимо подводить количест­во теплоты, эквивалентное внешней работе расширения.

Адиабатический процесс. Политропный процесс

Адиабатическимназывается процесс, при котором отсутствует теплообмен (dQ=0) между системой и окружающей средой. К адиабатическим процессам можно отнести все быстропротекающие процессы. Например, адиабатическим процессом можно считать процесс распространения звука в среде, так как скорость распро­странения звуковой волны настолько вели­ка, что обмен энергией между волной и средой произойти не успевает. Адиаба­тические процессы применяются в двига­телях внутреннего сгорания (расширение и сжатие горючей смеси в цилиндрах), в холодильных установках и т. д.

Из первого начала термодинамики (dQ=dU+dA) для адиабатического про­цесса следует, что

dA=-dU, (55.1)

т. е. внешняя работа совершается за счет изменения внутренней энергии системы.

Для произвольной массы газа перепишем уравнение (55.1) в виде

Продифференцировав уравнение состоя­ния для идеального газа pV=(m/M)RT, получим

Исключим из (55.2) и (55.3) температу­ру Т:

Разделив переменные и учитывая, что Срv =g найдем

dp/p=-gdV/V.

Интегрируя это уравнение в пределах от р1 до р2 и соответственно от V1 до V2, а затем потенцируя, придем к выражению

p2/pl=(V1/V2)g.

или

p1vg1 = p2vg2.

Так как состояния 1 и 2 выбраны про­извольно, то можно записать

рVg=const. (55.4)

Полученное выражение есть уравнение адиабатического процесса, называемое также уравнением Пуассона.

36. Второй закон термодинамики. Энтропия. Тепловые двигатели и холодильные машины. Цикл Карно.

Второе начало термодинамикиможно сформулиро­вать как закон возрастания энтропиизам­кнутой системы при необратимых процес­сах: любой необратимый процесс в замкну­той системе происходит так, что энтропия системы при этом возрастает.

Можно дать более краткую формули­ровку второго начала термодинамики: в процессах, происходящих в замкнутой системе, энтропия не убывает. Здесь су­щественно, что речь идет о замкнутых системах, так как в незамкнутых системах энтропия может вести себя любым обра­зом (убывать, возрастать, оставаться по­стоянной). Кроме того, отметим еще раз, что энтропия остается постоянной в за­мкнутой системе только при обратимых процессах. При необратимых процессах в замкнутой системе энтропия всегда воз­растает.

Формула Больцмана S = klnW, где k — постоянная Больцмана, позволяет объяснить постулируемое вторым началом термодинамики возрастание энтропии в замкнутой системе при необратимых процессах: возрастание энтропии означает переход системы из менее вероятных в бо­лее вероятные состояния. Таким образом, формула Больцмана позволяет дать стати­стическое толкование второго начала термодинамики. Оно, являясь статистиче­ским законом, описывает закономерности хаотического движения большого числа частиц, составляющих замкнутую систе­му.