рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Равнопеременное прямолинейное движение

Равнопеременное прямолинейное движение - раздел Механика, Скорость движения Средняя путевая скорость Мгновенная скорость/ скорость движения Равнопеременным Называется Движение, При Котором Скорость Тела (Материальной ...

Равнопеременным называется движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково, т.е. на равные величины. Это движение может быть равноускоренным и равнозамедленным.

Если направление ускорения а совпадает с направлением скорости V точки, движение называется равноускоренным. Если направление векторов а и V противоположны, движение называется равнозамедленным.

 

При равнопеременном прямолинейном движении ускорение остается постоянным и по модулю и по направлению (а = const). При этом среднее ускорение аср равно мгновенному ускорению а вдоль траектории точки. Нормальное ускорение при этом отсутствует (аn=0).

Изменение скорости ∆v = v - v0 в течении промежутка времени ∆t = t - t0 при равнопеременном прямолинейном движении равно: ∆v = a·∆t, или v - v0 = a·(t - t0). Если в момент начала отсчета времени (t0) скорость точки равна v0 (начальная скорость) и ускорение а известно, то скорость v в произвольный момент времени t: v = v0 + a·t. Проекция вектора скорости на ось ОХ связана с соответствующими проекциями векторов начальной скорости и ускорения уравнением: vх = v ± aх·t. Аналогично записываются уравнения для проекций вектора скорости на другие координатные оси.

 

Вектор перемещения ∆r точки за промежуток времени ∆t = t - t0 при равнопеременном прямолинейном движении с начальной скоростью v0 и ускорением а равен:

а его проекция на ось ОХ (или перемещение точки вдоль соответствующей оси координат) при t0 = 0 равна:

Путь Sx, пройденный точкой за промежуток времени ∆t = t - t0 в равнопеременном прямолинейном движении с начальной скоростью v0 и ускорением а, при t0 = 0 равен:

Так как координата тела равна х = х0 + S, то уравнение движения тела имеет вид:

Возможно так же при решении задач использовать формулу:

 

2. Криволинейное движение. Нормальное и тангенсальное ускорения.

Криволинейные движения – движения, траектории которых представляют собой не прямые, а кривые линии. По криволинейным траекториям движутся планеты, воды рек.

Криволинейное движение – это всегда движение с ускорением, даже если по модулю скорость постоянна. Криволинейное движение с постоянным ускорением всегда происходит в той плоскости, в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости XOY проекции vx и vy ее скорости на оси Ox и Oy и координаты x и y точки в любой момент времени t определяется по формулам:

Частным случаем криволинейного движения – является движение по окружности. Движение по окружности, даже равномерное, всегда есть движение ускоренное: модуль скорости все время направлен по касательной к траектории, постоянно меняет направление, поэтому движение по окружности всегда происходит с центростремительным ускорением.

где r – радиус окружности.

Вектор ускорения при движении по окружности направлен к центру окружности и перпендикулярно вектору скорости.

При криволинейном движении ускорение можно представить как сумму нормальной и тангенциальной составляющих:

- нормальное (центростремительное) ускорение, направлено к центру кривизны траектории и характеризует изменение скорости по направлению:

v – мгновенное значение скорости, r – радиус кривизны траектории в данной точке.

- тангенциальное (касательное) ускорение, направлено по касательной к траектории и характеризует изменение скорости по модулю.

Полное ускорение, с которым движется материальная точка, равно:

 

3. Движение точки по окружности. Угловые перемещение, ускорение, скорость. Связь между линейными и угловыми характеристиками.

Частным случаем криволинейного движения – является движение по окружности. Движение по окружности, даже равномерное, всегда есть движение ускоренное: модуль скорости все время направлен по касательной к траектории, постоянно меняет направление, поэтому движение по окружности всегда происходит с центростремительным ускорением.

где r – радиус окружности.

Вектор ускорения при движении по окружности направлен к центру окружности и перпендикулярно вектору скорости.

Кроме центростремительного ускорения, важнейшими характеристиками равномерного движения по окружности являются период и частота обращения.

Вращательное движение тела или точки характеризуется углом поворота, угловой скоростью и угловым ускорением.

Угол поворота φ - это угол между двумя последовательными положениями радиуса вектора r, соединяющего тело или материальную точку с осью вращения. Угловое перемещение измеряется в радианах.

Угловая скорость (w) – векторная физическая величина, показывающая, как изменяется угол поворота в единицу времени и численно равная первой производной от угла поворота по времени, т.е

.

Направление вектора угловой скорости совпадает с направлением вектора углового перемещения, т.е. вектора, численно равного углу φ и параллельного оси вращения; оно определяется по правилу буравчика: если совместить ось буравчика с осью вращения и поворачивать его в сторону движения вращающейся точки, то направление поступательного перемещения буравчика определит направление вектора угловой скорости. Точка приложения вектора произвольна, это может быть любая точка плоскости, в которой лежит траектория движения. Удобно совмещать этот вектор с осью вращения.

При равномерном вращении численное значение угловой скорости не меняется, т.е. ω = const. Равномерное вращение характеризуется:

 

- периодом вращения Т, т.е. временем, за которое тело делает один полный оборот, период обращения измеряется в с;

- частотой, измеряемой в Гц и показывающей число оборотов в с;

- круговой (циклической,угловой) частотой (это та же самая угловая скорость).

Угловая скорость может меняться как по величине, так и по направлению. Векторная величина, характеризующая изменение угловой скорости в единицу времени и численно равная второй производной от углового перемещения по времени, называется угловым ускорением:

Если положение и радиус окружности, по которой происходит вращение не изменяется со временем, то направление векторов углового ускорения и угловой скорости совпадают, если вращение ускоренное, и противоположны, если вращение замедленное.

При равномерном движении по окружности тангенциальная составляющая ускорения равна нулю, т.е. модуль линейной скорости постоянен и определяется соотношением Но т.к. направление скорости постоянно изменяется, то существует нормальное ускорение Т.о., линейная скорость направлена по касательной к окружности в каждой точке по движению; ускорение перпендикулярно скорости и направлено к центру кривизны.

– Конец работы –

Эта тема принадлежит разделу:

Скорость движения Средняя путевая скорость Мгновенная скорость/ скорость движения

Кинема тика точки раздел кинематики изучающий математическое описание движения материальных точек Основной задачей кинематики является... Основная задача механики определить положение тела в любой момент времени... Механическое движение это изменение положения тела в пространстве с течением времени относительно других тел...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Равнопеременное прямолинейное движение

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Равномерное прямолинейное движение
Равномерным прямолинейным движением называется такое прямолинейное движение, при котором материальная точка (тело) движется по прямой и в любые равные промежутки времени совершает одинаковые переме

Связь между линейными и угловыми величинами, характеризующими движение
Отдельные точки вращающегося тела имеют различные линейные скорости v, которые непрерывно изменяют свое направление и зависят от угловой скорости ω и расстояния r соответствующей точки до оси

Закон Сохранения Импульса
Для вывода закона сохранения импульса рассмотрим некоторые понятия. Совокуп­ность материальных точек (тел), рассмат­риваемых как единое целое, называется механической системой.Силы

Кинетическая энергия твердого тела, совершающая одновременно поступательное и вращательное движение
Вращательное движение При вращении вокруг неподвижной оси

Космические скорости.
Первая космическая скорость — скорость, которую необходимо придать баллистическому снаряду, пренебрегая сопротивлением атмосферы и вращением планеты, чтобы поместить его на кругову

Вязкость газов
В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле где

Вязкость жидкостей
Внутреннее трение жидкостей, как и газов, возникает при движении жидкости вследствие переноса импульса в направлении, перпендикулярном к направлению движения. Общий закон внутреннего трения — закон

Единицы измерения жесткости, или модуля Юнга
Поскольку модуль Юнга представляет собой отношение напряжения к безразмерной величине, то размерность его та же, что и у напряжения, например МН/м2 или кгс/см2. Формально моду

Скорость и ускорение при гармонических колебаниях.
Колебания, при которых изменения физических величин происходят по закону косинуса или синуса (гармоническому закону), наз. гармоническими колебаниями. Согласно определению

Векторные диаграммы для представления гармонических колебаний.
Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Гармонические колебания - колебания, при кот

Пружинный маятник
Колебательная система в этом случае представляет собой совокупность некоторого тела и прикрепленной к нему пружины. Пружина может располагаться либо вертикально (вертикальный пружинный маятник), ли

Свободные колебания пружинного маятника имеют следующие причины.
1. Действие на тело силы упругости, пропорциональной смещению тела х от положения равновесия и направленной всегда к этому положению. 2. Инертность колеблющегося тела, благодаря которой он

Физический маятник
Физический маятник - твердое тело, совершающее колебания в гравитационном поле вокруг горизонтальной оси подвеса, расположенной выше его центра тяжести.   Положение равновеси

Сложения колебаний одинаковой частоты
векторная диаграмма сложения колебаний:

Сложение колебаний разной частоты
 

Энергия упругой волны
  вектор плотности потока энергии физического поля; численно равен энер

Закон Максвелла распределения молекул по скоростям теплового движения
Закон Максвелла описывается некоторой функцией f(v), называемой функцией распределения молекул по скоростям. Если разбить диапазон скоростей молекул на малые интервалы, равные dv, то на ка

Теплота
Теплота - один из двух, известных современному естествознанию, способов передачи энергии - мера передачи неупорядоченного движения. Количество переданной энергии называют количеством теплоты.

Тепловые двигатели и холодильные машины. Цикл Карно.
Цикл Карно́— идеальный термодинамический цикл. Тепловая машина Карно, работающая

Термическое уравнение состояния
Термическим уравнением состояния (или, часто, просто уравнением состояния) называется связь между давлением, объёмом и температурой. Для одного моля газа Ван-дер-Ваальса оно имеет вид:

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги