Закон Сохранения Импульса

Для вывода закона сохранения импульса рассмотрим некоторые понятия. Совокуп­ность материальных точек (тел), рассмат­риваемых как единое целое, называется механической системой.Силы взаимодей­ствия между материальными точками ме­ханической системы называются внутрен­ними.Силы, с которыми на материальные точки системы действуют внешние тела, называются внешними.Механическая система тел, на которую не действуют

внешние силы, называется замкнутой(или изолированной).Если мы имеем механиче­скую систему, состоящую из многих тел, то, согласно третьему закону Ньютона, силы, действующие между этими телами, будут равны и противоположно направле­ны, т. е. геометрическая сумма внутренних сил равна нулю.

Рассмотрим механическую систему, состоящую из n тел, масса и скорость которых соответственно равны т1, m2, . .., тn и v1, v2, .. ., vn. Пусть F'1, F'2, ..., F'n — равнодействующие внутренних сил, действующих на каждое из этих тел, a f1, f2, ..., Fn — равнодействующие внешних сил. Запишем второй закон Ньютона для каждого из n тел механической системы:

d/dt(m1v1)=F'1+F1,

d/dt(m2v2)=F'2+F2,

d/dt(mnvn)= F'n+Fn.

Складывая почленно эти уравнения, получим

d/dt (m1v1+m2v2+... + mnvn) = F'1+F'2+...+ F'n+F1+F2+...+ Fn.

Но так как геометрическая сумма внутрен­них сил механической системы по третьему закону Ньютона равна нулю, то

d/dt(m1v1+m2v2 + ... + mnvn)= F1 + F2+...+ Fn, или

dp/dt=F1+ F2+...+ Fn, (9.1)

где

импульс системы. Таким образом, производная по времени от им­пульса механической системы равна гео­метрической сумме внешних сил, действующих на систему.

 

В случае отсутствия внешних сил (рассматриваем замкнутую систему)

Это выражение и является законом сохранения импульса:импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Закон сохранения импульса справед­лив не только в классической физике, хотя он и получен как следствие законов Ньютона. Эксперименты доказывают, что он выполняется и для замкнутых систем микрочастиц (они подчиняются законам квантовой механики). Этот закон носит универсальный характер, т. е. закон со­хранения импульса — фундаментальный закон природы.

7. Уравнение движения тела переменной массы ( уравнение Мещерского).

Уравнения движения тел с переменной массой являются следствиями законов Ньютона. Тем не менее, они представляют большой интерес, главным образом, в связи с ракетной техникой.

Принцип действия ракеты очень прост. Ракета с большой скоростью выбрасывает вещество (газы), воздействуя на него с большой силой. Выбрасываемое вещество с той же, но противоположно направленной силой, в свою очередь, действует на ракету и сообщает ей ускорение в противоположном направлении. Если нет внешних сил, то ракета вместе с выброшенным веществом является замкнутой системой. Импульс такой системы не может меняться во времени. На этом положении и основана теория движения ракет.

Основное уравнение движения тела переменной массы при любом законе изменения массы и при любой относительной скорости выбрасываемых частиц было получено В. И. Мещерским в его диссертации 1897 г. Это уравнение имеет следующий вид:

 

где – вектор ускорения ракеты, –– вектор скорости истечения газов относительно ракеты, M- масса ракеты в данный момент времени, –– ежесекундный расход массы, - внешняя сила.

По форме это уравнение напоминает второй закон Ньютона, однако, масса тела m здесь меняется во времени из-за потери вещества. К внешней силе F добавляется дополнительный член, который называется реактивной силой.

 

8. Момент импульса и момент силы. Уравнение моментов. Закон сохранения момента импульса. Гироскопические явления.