рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Решение задач динамики

Решение задач динамики - раздел Механика, Теоретическая Механика Пример 7. ...

Пример 7. На вертикальном участке трубы (рис. 55) на груз массой действуют сила тяжести и сила сопротивления ; расстояние от точки , где , до точки равно . На наклонном участке на груз действуют сила тяжести, сила трения скольжения с коэффициентом трения переменная сила , заданная в ньютонах.

Дано: кг, , где кг/м, м/с, м, , .

Определить: на участке .

Решение:

1. Рассмотрим движение груза на участке , считая груз материальной точкой. Изображаем груз (в произвольном положении) и действующие на него силы и . Проводим ось и составляем дифференциальное уравнение движения груза в проекции на эту ось:

, или, . (232)

Далее находим , . Подчеркиваем, что в уравнении все переменные силы надо обязательно выразить через величины, от которых они зависят. Учтя еще, что , получим

, или . (233)

Введем для сокращения записей обозначения:

м–1, м22, (234)

где при подсчете принято м22. Тогда уравнение (233) можно представить в виде:

. (235)

Разделяя в уравнении (235) переменные, а затем беря от обеих частей интегралы, получим

и . (236)

По начальным условиям при , что дает и из равенства (236) находим или . Отсюда

и .

В результате находим:

. (237)

Полагая в равенстве (237) м, и заменяя и их значениями (234), определим скорость ив груза в точке (м/с, число ):

и м/с. (238)

2. Рассмотрим теперь движение груза на участке . Найденная скорость будет для движения на этом участке начальной скоростью (). Изображаем груз (в произвольном положении) и действующие на него силы , , и . Проведем из точки оси и и составим дифференциальное уравнение движения груза в проекции на ось :

,

или

, (239)

где . Для определения составим уравнение в проекции на ось . Так как , получим , откуда . Следовательно, . Кроме того, и уравнение (239) примет вид:

. (240)

Разделив обе части равенства на , вычислив и , подставим эти значения в (9). Тогда получим:

. (241)

Умножая обе части уравнения (241) на и интегрируя, найдем:

. (242)

Будем теперь отсчитывать время от момента, когда груз находится в точке , считая в этот момент . Тогда при , где дается равенством (238). Подставляя эти величины в (242), получим

.

При найденном значении уравнение (242) дает:

. (243)

Умножая здесь обе части на и снова интегрируя, найдем

. (244)

Так как при , то и окончательно искомый закон движения груза будет

. (245)

где – в метрах, – в секундах.

Ответ: , – в метрах, – в секундах.

Пример 8. В центре тяжести тележки массой , движущейся по гладкой горизонтальной плоскости, укреплен невесомый стержень длиной с грузом массой на конце (рис. 56). В момент времени , когда скорость тележки , стержень начинает вращаться вокруг оси по закону .

Дано: кг, кг, м/с, м, рад, где – в секундах.

Определить: закон изменения скорости тележки .

Решение:

1. Рассмотрим механическую систему, состоящую из тележки и груза , в произвольном положении (рис. 56). Изобразим действующие на систему внешние силы: силы тяжести , и реакции плоскости , . Проведем координатные оси так, чтобы ось была горизонтальна.

Чтобы определить , воспользуемся теоремой об изменении количества движения системы в проекции на ось . Так как все действующие на систему внешние силы вертикальны (рис. 56), то и теорема дает

, откуда . (246)

Для рассматриваемой механической системы , где и – количества движения тележки и груза соответственно (– скорость тележки, – скорость груза по отношению к осям ). Тогда из равенства (246) следует, что

или . (247)

2. Определение . Рассмотрим движение груза как сложное, считая его движение по отношению к тележке относительным (это движение, совершаемое при вращении стержня вокруг оси ), а движение самой тележки – переносным. Тогда и

. (248)

Но и, следовательно, . Вектор направлен перпендикулярно стержню и численно .

Изобразив этот вектор на рис. 56 с учетом знака , найдем, что . Окончательно из равенства (248) получим

. (249)

(В данной задаче величину можно еще найти другим путем, определив абсциссу груза , для которой, как видно из рис. 56, получим , тогда , где , .)

3. При найденном значении равенство (247), если учесть, что , примет вид

. (250)

Постоянную интегрирования определим по начальным условиям: при , . Подстановка этих величин в уравнение (250) дает и тогда из (250) получим:

.

Отсюда находим следующую зависимость скорости и тележки от времени

. (251)

Подставив сюда значения соответствующих величин, находим искомую зависимость и от от :

. (252)

Ответ:

Пример 9. Однородная горизонтальная платформа (прямоугольная со сторонами и ), имеющая массу , жестко скреплена с вертикальным валом и вращается вместе с ним вокруг оси с угловой скоростью (рис. 57,а). В момент времени на вал начинает действовать вращающий момент , направленный противоположно ; одновременно груз массой , находящийся в желобе в точке , начинает двигаться по желобу (под действием внутренних сил) по закону .

Дано: кг, кг, с–1, м, (где в метрах, – в секундах), , где .

Определить: закон изменения угловой скорости платформы .

 

а) б)

Рис. 57

Решение:

1. Рассмотрим механическую систему, состоящую из платформы и груза . Для определения применим теорему об изменении кинетического момента системы относительно оси :

. (253)

Изобразим действующие на систему внешние силы: силы тяжести , и реакции , и вращающий момент . Так как силы и параллельны оси , а реакции и эту ось пересекают, то их моменты относительно оси равны нулю. Тогда, считая для момента положительным направление против хода часовой стрелки, получим и уравнение (253) примет такой вид:

. (254)

Умножая обе части этого уравнения на и интегрируя, получим

. (255)

Для рассматриваемой механической системы

, (256)

где и – кинетические моменты платформы и груза соответственно.

2. Определение . Так как платформа вращается вокруг оси , то . Значение найдем по теореме Гюйгенса: (– момент инерции относительно оси , параллельной оси и проходящей через центр платформы).

Но, как известно,

.

Тогда

.

Следовательно,

. (257)

3. Для определения обратимся к рис. 57,б и рассмотрим движение груза как сложное, считая его движение по платформе относительным, а вращение самой платформы вокруг оси переносным движением. Тогда абсолютная скорость груза . Так как груз движется по закону , то ; изображаем вектор на рис. 57,б с учетом знака (при направление было бы противоположным). Затем, учитывая направление , изображаем вектор (); численно . Тогда, по теореме Вариньона,

. (258)

Из рис. 57,б видно, что . Подставляя эту величину в равенство (6), находим .

4. Подставив значения и из (257) и (258) в равенство (256), получим с учетом данных задачи:

. (259)

Тогда уравнение (255), где , примет вид

. (260)

Постоянную интегрирования определяем по начальным условиям: при , . Получим . При этом значении из уравнения (260) находим искомую зависимость от :

. (261)

Ответ: с–1, где – в секундах.

Пример 10. Механическая система (рис. 58) состоит из сплошного однородного цилиндрического катка 1, подвижного блока 2, ступенчатого шкива 3 с радиусами ступеней и и радиусом инерции относительно оси вращения , блока 4 и груза 5 (коэффициент трения груза о плоскость равен ). Тела системы соединены нитями, намотанными на шкив 3. К центру блока 2 прикреплена пружина с коэффициентом жесткости ; ее начальная деформация равна нулю. Система приходит в движение из состояния покоя под действием силы , зависящей от перемещения точки ее приложения. На шкив 3 при движении действует постоянный момент сил сопротивления.

Дано: кг, кг, кг, кг, кг, м, м, м, , Н/м, , Н, м.

Определить: в тот момент времени, когда .

Решение:

1. Рассмотрим движение неизменяемой механической системы, состоящей из весомых тел 1, 3, 5 и невесомых тел 2, 4, соединенных нитями. Изобразим действующие на систему внешние силы: активные , , , , , реакции , , , , натяжение нити , силы трения , и момент .

Для определения воспользуемся теоремой об изменении кинетической энергии:

. (262)

2. Определяем и . Так как в начальный момент система находилась в покое, то . Величина равна сумме энергий всех тел системы:

. (263)

Учитывая, что тело 1 движется плоскопараллельно, тело 5 – поступательно, а тело 3 вращается вокруг неподвижной оси, получим

,

,

, (264)

Все входящие сюда скорости надо выразить через искомую . Для этого предварительно заметим, что , где – любая точка обода радиуса шкива 3 и что точка – мгновенный центр скоростей катка 1, радиус которого обозначим . Тогда

, . (265)

Кроме того, входящие в (3) моменты инерции имеют значения

, . (266)

Подставив все величины (265) и (266) в равенства (264), а затем, используя равенство (263), получим окончательно

. (267)

3. Найдем сумму работ всех действующих внешних сил при перемещении, которое будет иметь система, когда центр катка 1 пройдет путь . Введя обозначения: – перемещение груза 5 (), – угол поворота шкива 3, и – начальное и конечное удлинения пружины, получим

,

,

,

,

.

Работы остальных сил равны нулю, т.к. точки и , где приложены силы , и – мгновенные центры скоростей; точки, где приложены силы , и – неподвижны; а сила – перпендикулярна перемещению груза.

По условиям задачи, . Тогда , где – перемещение точки (конца пружины). Величины и надо выразить через заданное перемещение . Для этого учтем, что зависимость между перемещениями здесь такая же, как и между соответствующими скоростями. Тогда, так как (равенство уже отмечалось), то и .

Из рис. 59 видно, что , а так как точка является мгновенным центром скоростей для блока 2 (он как бы «катится» по участку нити ), то ; следовательно, и . При найденных значениях и для суммы вычисленных работ получим

. (268)

Подставляя выражения (267) и (268) в уравнение (262) и учитывая, что , придем к равенству

. (269)

Из равенства (269), подставив в него числовые значения заданных величин, найдем искомую угловую скорость .

Ответ: с–1.

Пример 11. Механическая система (рис. 60) состоит из обмотанных нитями блока 1 радиуса и ступенчатого шкива 2 (радиусы ступеней и , радиус инерции относительно оси вращения ), и из грузов 3 и 4, прикрепленных к этим нитям. Система движется в вертикальной плоскости под действием сил тяжести и пары сил с моментом , приложенной к блоку 1.

Дано: Н, Н, Н, Н, , м, м, м; м.

Определить: ускорение груза 3, пренебрегая трением.

 

 

Рис. 60

 

Решение:

1. Рассмотрим движение механической системы, состоящей из тел 1, 2, 3, 4, соединенных нитями. Система имеет одну степень свободы. Связи, наложенные на эту систему, – идеальные.

Для определения применим общее уравнение динамики:

, (270)

где – сумма элементарных работ активных сил; – сумма элементарных работ сил инерции.

2. Изображаем на чертеже активные силы , , и пару сил с моментом . Сообщим системе возможное перемещение и составим выражение для суммы работ:

.

Выразим через :

.

В результате получим

. (271)

3. Задавшись направлением ускорения , изображаем на чертеже силы инерции , и пару сил инерции с моментом , величины которых равны:

, , . (272)

Сообщая системе возможное перемещение , получим:

. (273)

Выразим все ускорения, входящие в (272) через искомую величину

, ,

а перемещения через :

, , .

В результате получим:

. (274)

Подставив величины и (формулы (271) и (274)) в уравнение (270), и сократив на , найдем:

. (275)

Вычисления дают м/с2. Знак указывает, что ускорение груза 3 и ускорения других тел направлены противоположно показанным на рис. 60.

Ответ: м/с2, ускорение груза 3 и ускорения других тел направлены противоположно показанным на рисунке.

Пример 12.

Механическая система (рис. 60) состоит из обмотанных нитями блока 1 радиуса и ступенчатого шкива 2 (радиусы ступеней и , радиус инерции относительно оси вращения ), и из грузов 3 и 4, прикрепленных к этим нитям. Система движется в вертикальной плоскости под действием сил тяжести и пары сил с моментом , приложенной к блоку 1.

Дано: Н, Н, Н, Н, , м, м, м; м.

Определить: ускорение груза 3, пренебрегая трением.

Решение:

1. Система имеет одну степень свободы. Выберем в качестве обобщенной координаты перемещение груза 3, полагая, что он движется вниз и отсчитывая в сторону движения (рис. 60). Составим уравнение Лагранжа:

. (276)

2. Определим кинетическую энергию всей системы, равную сумме кинетических энергий всех тел:

. (277)

Грузы 3 и 4 движутся поступательно, поэтому шкив 2 вращается вокруг неподвижной оси, следовательно

, , . (278)

Скорости , и выразим через обобщенную скорость :

, , . (279)

Подставляя значения величин (279) в равенства (278), а затем значения , и в соотношение (277), получим:

. (280)

Так как кинетическая энергия зависит только от , производные левой части уравнения (276) примут вид:

,

, . (281)

3. Найдем обобщенную силу . Для этого составим уравнение работ активных сил на перемещении . Воспользуемся соотношением (271) примера 11:

. (282)

.

Коэффициент при в (282) и будет обобщенной силой:

. (283)

Подставляя (281) и (283) в уравнение (276), получим

.

Отсюда находим

м/с2,

что совпадает с ответом примера 11.

Ответ: м/с2, что ускорение груза 3 и ускорения других тел направлены противоположно показанным на рисунке.


– Конец работы –

Эта тема принадлежит разделу:

Теоретическая Механика

Воронежский государственный технический университет...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Решение задач динамики

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Алгебраический момент силы относительно точки
Алгебраическим моментом силыотносительно точки называют произведение модуля силы на плечо силы относите

Векторный момент силы относительно точки
Векторным моментом с

Момент силы относительно оси
Моментом силы относительно оси называют алгебраический момент проекции этой силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с этой плоскостью (рис. 4). Момент сил

Пара сил и алгебраический момент пары сил
Парой сил называют систему двух равных по модулю параллельных сил, направленных в противоположные стороны

Аксиомы статики
При формулировке аксиом предполагаем, что на твердое тело или материальную точку действуют силы, которые указаны в соответствующей аксиоме. I. Аксиома о равновесии системы двух сил

Простейшие теоремы статики
Теорема о переносе силы вдоль линии действия: Действие силы на твердое тело не изменится от переноса Теорема о трех силах: если твердое тело под действием трех сил

Приведение системы сил к простейшей системе. Условия равновесия
Лемма о параллельном переносе сил: силу можно переносить параллельно самой себе в любую точку твердого тела, добавляя при этом пару сил, векторный момент которой равен векторному моменту

Равновесие пар сил
Если на твердое тело действуют пары сил, как угодно расположенные в пространстве, то эти пары сил можно заменить одной эквивалентной парой сил, векторный момент которой равен сумме векторных момент

Условия равновесия произвольной системы сил в векторной форме
Векторные условия равновесия произвольной системы сил: для равновесия системы сил, приложенных к твердому телу, необходимо и достаточно, чтобы главный вектор системы сил был равен нулю и главный

Условия равновесия пространственной системы сходящихся сил
Для равновесия пространственной системы сходящихся сил, приложенных к твердому телу, необходимо и достаточно, чтобы суммы проекций сил на каждую из трех прямоугольных осей координат были равны н

Условия равновесия плоской системы сил
Расположим оси и в плос

Центр параллельных сил
Пусть на тело действует система параллельных сил . Такая система имеет равнодействующую

Способы нахождения центра тяжести
Симметричные тела. Если тело имеет плоскость (ось, центр) симметрии, то его центр тяжести находится в этой плоскости (на оси, в центре).

Распределенные силы
В статике рассматривают силы, приложенные к твердому телу в какой-либо его точке, и поэтому такие силы называют сосредоточенными. В действительности обычно силы бывают приложены к какой-либо

Трение скольжения
При движении или стремлении двигать одно тело по поверхности другого в касательной плоскости поверхностей соприкосновения возникает сила трения скольжения (трение первого рода). Пус

Трение качения
Если одно тело, например цилиндрический каток, катить или стремиться катить по поверхности другого тела, то кроме силы трения скольжения из-за деформации поверхностей тел дополнительно возникает па

Решение задач статики
Пример 1.На угольник (

Кинематика точки
В кинематике точки рассматриваются характеристики движения точки, такие, как скорость, ускорение, и методы их определения при различных способах задания движения. Важным в кинематике точки является

Скорость и ускорение точки
Одной из основных характеристик движения точки является ее скорость относительно выбранной системы отсчета, ко

Частные случаи движения точки
Равномерное движение. При равномерном движении точки по траектории любой формы , следовательно, постоян

Кинематика твердого тела
Числом степеней свободы твердого тела называют число независимых параметров, определяющих положение тела относительно рассматриваемой системы отсчета. Движение твердого тела во мног

Поступательное движение твердого тела
Поступательным движением твердого тела называют такое его движение, при котором любая прямая, жестко скрепленная с телом, остается параллельной своему первоначальному положению в каждый моме

Вращение твердого тела вокруг неподвижной оси
Вращением твердого тела вокруг неподвижной оси (оси вращения) называется такое его движение, при котором точки тела, лежащие на оси вращения, остаются неподвижными в течение всего времени дв

Частные случаи вращения твердого тела
Вращение называется равномерным, если . Алгебраическая угловая скорость отличается от модуля угловой ск

Скорости и ускорения точек тела при вращении вокруг неподвижной оси
Известно уравнение вращения твердого тела вокруг неподвижной оси (рис. 29). Расстояние

Векторы угловой скорости и углового ускорения
Введем понятия векторов угловой скорости и углового ускорения тела. Если – единичный вектор оси вращения, напр

Векторные формулы для скоростей и ускорений точек тела
Выразим скорость, касательное, нормальное и полное ускорения точки тела в векторной форме (рис. 32). Скорость точки по модулю и направлению можно представить векторным произведением

Сложное движение точки
Для изучения некоторых, более сложных видов движений твердого тела целесообразно рассмотреть простейшее сложное движение точки. Во многих задачах движение точки приходится рассматривать относительн

Ускорение Кориолиса
Рассмотрим ускорение Кориолиса и его свойства. Оно определяется формулой (81) . Угловую ско

Плоское (плоскопараллельное) движение твердого тела
Плоским движением твердого тела называют такое его движение, при котором каждая его точка все время движется в одной и той же плоскости. Плоскости, в которых движутся отдельные точки, паралл

Скорости точек плоской фигуры
Применяя к плоскому движению теорему о сложении скоростей для какой-либо точки фигуры, получаем

Мгновенный центр скоростей
В каждый момент вр

Ускорения точек плоской фигуры
Рассматривая плоское движение плоской фигуры как сложное, состоящее из переносного поступательного вместе с полюсом

Мгновенный центр ускорений
В каждый момент движения плоской фигуры в своей плоскости, если и

Решение задач кинематики
Пример 3. Даны уравнения движения точки в плоскости :

Аксиомы динамики
I. Первая аксиома (законом классической механики, закон инерции): материальная точка, на которую не действуют силы или действует равновесная система сил, обладает способност

Дифференциальные уравнения движения материальной точки
Используя основной закон динамики, можно получить дифференциальные уравнения движения материальной точки в различных системах координат. По аксиоме о связях и силах реакций связей можно получить ди

Первая задача
Зная массу точки и ее закон движения, можно найти действующую на точку силу. Действительно, если, например, заданы уравнения движения точки в декартовой системе координат

Вторая задача
По заданной массе и действующей на точку силе необходимо определить движение этой точки. Рассмотрим решение этой задачи в прямоугольной декартовой системе координат. В общем случае сила

Дифференциальные уравнения относительного движения материальной точки
Имеем инерциальную систему отсчета и материальную точку массой

Центр масс
При рассмотрении движения твердых тел и других механических систем важное значение имеет точка, называемая центром масс. Если механическая система состоит

Моменты инерции относительно точки и оси
Моментом инерции механической системы, состоящей из

Теорема Штейнера
Установим зависимость

Однородный стержень
Имеем однородный стержень длиной и массой

Прямоугольная пластина
Прямоугольная тонкая пластина имеет размеры и

Сплошной диск
Имеем тонкий однородный диск радиусом и массой

Тонкое кольцо (круглое колесо)
Имеем тонкое кольцо радиусом и массой

Круглый цилиндр
Для круглого однородного цилиндра, масса которого , радиус

Теоремы динамики
Внешними силами механической системы называются силы, с которыми действуют на точки системы тела и точки, не входящие в рассматриваемую систему. Внутренними силами механическ

Теорема о движении центра масс
Центр масс системы движется так же, как и материальная точка, масса которой равна массе всей системы, если на точку действуют все внешние силы, приложенные к механической системе:

Количество движения точки и системы
Количеством движения материальной точки называют вектор, равный произведению массы точки

Теорема об изменении количества движения точки
Теорема об изменении количества движения точки в дифференциальной форме: первая производная по времени от количества движения точки равна действующей на точку силе:

Теорема об изменении количества движения системы
Теорема об изменении количества движения системы в дифференциальной форме: производная по времени от количества движения системы равна векторной сумме всех внешних сил, действующих на сис

Законы сохранения количества движения
Законы сохранения количества движения системы получаются как частные случаи теоремы об изменении количества движения для системы в зависимости от особенностей системы внешних сил, приложенных к рас

Теорема об изменении кинетического момента
Для материальной точки массой , движущейся со скоростью

Теорема об изменении кинетического момента точки
Первая производная по времени от кинетического момента точки относительно какого-либо центра равна моменту силы относительно того же центра:

Теорема об изменении кинетического момента системы
Первая производная по времени от кинетического момента системы относительно какой-либо точки равна векторной сумме моментов внешних сил, действующих на систему, относительно той же точки.

Законы сохранения кинетических моментов
1. Если главный момент внешних сил системы относительно точки равен нулю, т. е.

Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси
Из теоремы об изменении кинетического момента (172') следует дифференциальное уравнение вращения твердого тела вокруг неподвижной оси

Теорема об изменении кинетического момента системы в относительном движении по отношению к центру масс
Пусть механическая система совершает движение относительно основной системы координат . Возьмем подвижную сист

Дифференциальные уравнения плоского движения твердого тела
Для твердого тела, совершающего плоское движение и, следовательно, имеющего три степени свободы, соответственно получим следующие три дифференциальных уравнения:

Работа силы
Работа силы на каком-либо перемещении является одной из основных характеристик, оценивающих действие силы на этом перемещении.

Кинетическая энергия
Кинетическая энергия точки и системы. Кинетической энергией материальной точки называют половину произведения массы точки на квадрат ее скорости, т.е.

Теорема об изменении кинетической энергии точки
Теорема об изменении кинетической энергии точки в дифференциальной форме: дифференциал кинетической энергии точки равен элементарной работе силы, действующей на точку.

Теорема об изменении кинетической энергии системы
Теорема об изменении кинетической энергии системы в дифференциальной форме: дифференциал от кинетической энергии системы равен сумме элементарных работ всех внешних и внутренних си

Принцип Даламбера для материальной точки
Принцип Даламбера для свободной материальной точки эквивалентен основному закону динамики. Для несвободной точки он эквивалентен основному закону вместе с аксиомой связей. Уравнение движен

Принцип Даламбера для системы материальных точек
Рассмотрим систему материальных точек. К каждой точке системы в общем случае приложены равнодействующая актив

Силы инерции твердого тела в частных случаях его движения
При поступательном движении. Если твердое тело движется поступательно, то ускорения его точек одинаковы. Силы инерции этих точек составляют систему параллельных сил, направленных в од

Возможные перемещения
Для одной точки возможным (виртуальным) перемещением называется такое бесконечно милое (элементарное) мысленное перемещение, которое допускается в рассматриваемый момент времени наложенными на т

Элементарная работа силы на возможном перемещении. Идеальные связи
Элементарную работу силы на возможном перемещении ее точки приложения вычисляют по обычным формулам для элементарной работы, т.е.

Принцип возможных перемещений
Принцип возможных перемещений, или принцип Лагранжа, содержит необходимые и достаточные условия равновесия некоторых механических систем. Он формулируется следующим образом: для ра

Обобщенные координаты системы
Пусть система состоит из точек и, следовательно, ее положение в пространстве в каждый момент времени определя

Обобщенные силы
Запишем сумму элементарных работ сил, действующих на точки системы, на возможном перемещении системы:

Вычисление обобщенной силы
1. Обобщенную силу можно вычислить по формуле (227), ее определяющей, т.е. . 2. Обобщенные

Общее уравнение динамики
Общее уравнение динамики для системы с любыми связями (объединенный принцип Даламбера-Лагранжа или общее уравнение механики):

Уравнения Лагранжа второго рода
Уравнения Лагранжа можно рассматривать как алгоритм получения дифференциальных уравнений движения системы, т.е. дифференциальных уравнений относительно обобщенных координат. Уравнения Лагр

Библиографический список
1. Никитин Н.Н. Курс теоретической механики: учебник для машиностроит. и приборостроит. спец. вузов / Н.Н. Никитин. – М.: Высш. шк., 1990. 607с. 2. Бутенин Н.В. Курс теоретической механики

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги