рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

При движении материальной точки ее координаты с течением времени изменяют­ся. В общем случае ее движение определя­ется скалярными уравнениями

При движении материальной точки ее координаты с течением времени изменяют­ся. В общем случае ее движение определя­ется скалярными уравнениями - раздел Механика, . Модели В Механике. Система Отсчета. Траектория, Длина Пути, Вект...

. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения

Механика для описания движения тел в зависимости от условий конкретных задач использует разные физические модели. Простейшей моделью является матери­альная точка— тело, обладающее массой, размерами которого в данной задаче мож­но пренебречь. Понятие материальной точ­ки — абстрактное, но его введение облег­чает решение практических задач. Напри­мер, изучая движение планет по орбитам вокруг Солнца, можно принять их за мате­риальные точки.

Произвольное макроскопическое тело или систему тел можно мысленно разбить на малые взаимодействующие между со­бой части, каждая из которых рассматри­вается как материальная точка. Тогда изучение движения произвольной системы тел сводится к изучению системы матери­альных точек.В механике сначала изуча­ют движение одной материальной точки, а затем переходят к изучению движения системы материальных точек.

Под воздействием тел друг на друга тела могут деформироваться, т. е. изме­нять свою форму и размеры. Поэтому в механике вводится еще одна модель — абсолютно твердое тело. Абсолютно твер­дым теломназывается тело, которое ни при каких условиях не может деформиро­ваться и при всех условиях расстояние между двумя точками (или точнее между

двумя частицами) этого тела остается по­стоянным.

Любое движение твердого тела можно представить как комбинацию поступатель­ного и вращательного движений. Поступа­тельное движение— это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллель­ной своему первоначальному положению. Вращательное движениеэто движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения.

Движение тел происходит в простран­стве и во времени. Поэтому для описания движения материальной точки надо знать, в каких местах пространства эта точка находилась и в какие моменты времени она проходила то или иное положение.

Положение материальной точки опре­деляется по отношению к какому-либо другому, произвольно выбранному телу, называемому телом отсчета.С ним связы­вается система отсчета— совокупность системы координат и часов, связанных с телом отсчета. В декартовой системе координат, используемой наиболее часто, положение точки А в данный момент вре­мени по отношению к этой системе ха­рактеризуется тремя координатами х, у и z или радиусом-вектором r, проведен­ным из начала системы координат в дан­ную точку (рис. 1).

При движении материальной точки ее координаты с течением времени изменяют­ся. В общем случае ее движение определя­ется скалярными уравнениями

эквивалентными векторному уравнению

r = r(t). (1.2)

Уравнения (1.1) (соответственно (1.2)) называются кинематическими уравнения­ми движения материальной точки.

 

Число независимых координат, полно­стью определяющих положение точки в пространстве, называется числом степе­ней свободы.Если материальная точка свободно движется в пространстве, то, как уже было сказано, она обладает тремя степенями свободы (координаты х, у и z); если она движется по некоторой поверхно­сти, то — двумя степенями свободы, ес­ли — вдоль некоторой линии, то — одной степенью свободы.

Исключая t в уравнениях (1.1) и (1.2), получим уравнение траектории движения материальной точки. Траекто­риядвижения материальной точки — ли­ния, описываемая этой точкой в простран­стве. В зависимости от формы траектории движение может быть прямолинейным или криволинейным.

Рассмотрим движение материальной точки вдоль произвольной траектории (рис.2). Отсчет времени начнем с момен­та, когда точка находилась в положении А. Длина участка траектории АВ, прой­денного материальной точкой с момента начала отсчета времени, называется дли­ной путиAs и является скалярной фун­кцией времени: Ds = Ds(t). Вектор Dr=r-r0, проведенный из начального положе­ния движущейся точки в положение ее в. данный момент времени (приращение радиуса-вектора точки за рассматривае­мый промежуток времени), называется пе­ремещением.

При прямолинейном движении вектор перемещения совпадает с соответствую­щим участком траектории и модуль пе­ремещения |Dr| равен пройденному пу­ти Ds.

Скорость

Для характеристики движения материаль­ной точки вводится векторная величина — скорость, которой определяется как быстрота движения, так и его направление в данный момент времени.

Пусть материальная точка движется по какой-либо криволинейной траектории так, что в момент времени t ей соответ­ствует радиус-вектор r0 (рис. 3). В течение малого промежутка времени Dt точка прой­дет путь As и получит элементарное (бес­конечно малое) перемещение Dr.

Вектором средней скорости <v> назы­вается отношение приращения Dr радиуса-вектора точки к промежутку времени Dt:

Направление вектора средней скоро­сти совпадает с направлением Dr. При неограниченном уменьшении Dt средняя скорость стремится к предельному значе­нию, которое называется мгновенной ско­ростью v:

Мгновенная скорость v, таким образом, есть векторная величина, равная первой производной радиуса-вектора движущей­ся точки по времени. Так как секущая в пределе совпадает с касательной, то вектор скорости v направлен по касатель­ной к траектории в сторону движения (рис. 3). По мере уменьшения Dt путь Ds все больше будет приближаться к |Dr|, поэтому модуль мгновенной скорости

 

 

Таким образом, модуль мгновенной скоро­сти равен первой производной пути по времени:

При неравномерном движениимодуль мгновенной скорости с течением времени изменяется. В данном случае пользуются скалярной величиной (v) —средней ско­ростьюнеравномерного движения:

Если выражение ds = vdt (см. форму­лу (2.2)) проинтегрировать по времени в пределах от t до t+Dt, то найдем длину пути, пройденного точкой за время Dt:

В случае равномерного движениячисло­вое значение мгновенной скорости посто­янно; тогда выражение (2.3) примет вид

Длина пути, пройденного точкой за промежуток времени от t1 до t2, дается интегралом

 

Ускорение и его составляющие

В случае неравномерного движения важно знать, как быстро изменяется скорость с течением времени. Физической величи­ной, характеризующей быстроту измене­ния скорости по модулю и направлению, является ускорение.

Рассмотрим плоское движение,т. е. такое, при котором все участки тра­ектории точки лежат в одной плоскости. Пусть вектор v задает скорость точки

А в момент времени t. За время Dt движу­щаяся точка перешла в положение В и приобрела скорость, отличную от v как по модулю, так и направлению и равную v1=v + Dv. Перенесем вектор v1 в точку А и найдем Dv (рис.4).

Средним ускорениемнеравномерного движения в интервале от t до t+Dt на­зывается векторная величина, равная от­ношению изменения скорости Dv к интер­валу времени Dt:

Мгновенным ускорением а(ускорени­ем) материальной точки в момент време­ни t будет предел среднего ускорения:

Таким образом, ускорение а есть вектор­ная величина, равная первой производной скорости по времени.

Разложим вектор Dv на две составля­ющие. Для этого из точки А (рис. 4) по направлению скорости v отложим вектор

AD, по модулю равный v1. Очевидно, что вектор CD, равный Dvt, определяет изме­нение скорости по модулю за время Dt: Dvt=v1- v. Вторая же составляющая вектора Dv-Dvn характеризует изменение скорости за время Dt по направлению.

Тангенциальная составляющая уско­рения

 

т.е. равна первой производной по времени от модуля скорости, определяя тем самым быстроту изменения скорости по модулю. Найдем вторую составляющую ускоре­ния. Допустим, что точка В достаточно близка к точке А, поэтому As можно счи­тать дугой окружности некоторого радиу­са r, мало отличающейся от хорды АВ. Тогда из подобия треугольников АОВ и EAD следует Dvn/AB = v1/r, но так как AB = vDt, то

В пределе при Dt®0 получим v1®v.

Поскольку v1®v, угол EAD стремится к нулю, а так как треугольник EAD равно­бедренный, то угол ADE между v и Dvn стремится к прямому. Следовательно, при Dt®0 векторы Dvn и v оказываются взаим­но перпендикулярными. Так как вектор скорости направлен по касательной к тра­ектории, то вектор Dvn, перпендикулярный вектору скорости, направлен к центру ее кривизны. Вторая составляющая ускоре­ния, равная

называется нормальной составляющей ус­коренияи направлена по нормали к тра­ектории к центру ее кривизны (поэтому ее называют также центростремительным ускорением).

Полное ускорениетела есть геометри­ческая сумма тангенциальной и нормаль­ной составляющих (рис.5):

Итак, тангенциальная составляющая ускорения характеризует быстроту изменения скорости по модулю (направлена по касательной к траектории), а нормальная составляющая ускорения — быстроту из­менения скорости по направлению (на­правлена к центру кривизны траекто­рии).

В зависимости от тангенциальной и нормальной составляющих ускорения дви­жение можно классифицировать следую­щим образом:

1) аt=0, аn = 0 — прямолинейное рав­номерное движение;

2) at=a=const, an=0 — прямолиней­ное равнопеременное движение. При та­ком виде движения

Если начальный момент времени t1=0, а начальная скорость v1=v0, то, обозна­чив t2 = t и v2 = v, получим a = (v-v0)/t, откуда

v =v0+at.

Проинтегрировав эту формулу в пре­делах от нуля до произвольного момента времени t, найдем, что длина пути, прой­денного точкой, в случае равнопеременно­го движения

3) аt=f(t), аn=0 — прямолинейное движение с переменным ускорением;

4) аt=0, аn=const. При аt=0 ско­рость по модулю не изменяется, а изменя­ется по направлению. Из формулы аn= v2/r следует, что радиус кривизны до­лжен быть постоянным. Следовательно, движение по окружности является равно­мерным;

5) аt=0, аn¹0 — равномерное кри­волинейное движение;

6) at=const, an¹0—криволинейное равнопеременное движение;

7) at= f(t), an¹0 — криволинейное движение с переменным ускорением.

Угловая скорость и угловое ускорение

Рассмотрим твердое тело, которое враща­ется вокруг неподвижной оси. Тогда от­дельные точки этого тела будут описывать окружности разных радиусов, центры ко­торых лежат на оси вращения. Пусть не­которая точка движется по окружности радиуса R (рис.6). Ее положение через промежуток времени Dt зададим углом Dj. Элементарные (бесконечно малые) углы поворота рассматривают как векторы. Мо­дуль вектора dj равен углу поворота, а его направление совпадает с направле­нием поступательного движения острия винта, головка которого вращается в на­правлении движения точки по окружности, т. е. подчиняется правилу правого, винта(рис.6). Векторы, направления которых связываются с направлением вращения, называются псевдовекторамиили акси­альными векторами.Эти векторы не имеют определенных точек приложения: они мо­гут откладываться из любой точки оси вращения.

Угловой скоростьюназывается вектор­ная величина, равная первой производной угла поворота тела по времени:

Вектор «в направлен вдоль оси вращения по правилу правого винта, т. е. так же, как и вектор dj (рис. 7). Размерность угловой скорости dimw=T-1, a . ее единица — радиан в секунду (рад/с).

Линейная скорость точки (см. рис. 6)

В векторном виде формулу для линейной скорости можно написать как вектор­ное произведение:

При этом модуль векторного произведе­ния, по определению, равен

, а направление совпадает с направлением поступательного движения правого винта при его вращении от w к R.

Если w=const, то вращение равномер­ное и его можно характеризовать перио­дом вращенияТ — временем, за которое точка совершает один полный оборот, т. е. поворачивается на угол 2p. Так как промежутку времени Dt=T соответствует Dj=2p, то w= 2p/Т, откуда

 

 

Число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени называет­ся частотой вращения:

Угловым ускорениемназывается век­торная величина, равная первой производ­ной угловой скорости по времени:

При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой ско­рости. При ускоренном движении вектор

 

e сонаправлен вектору w (рис.8), при замедленном.— противонаправлен ему (рис. 9).

Тангенциальная составляющая ускорения

Нормальная составляющая ускорения

Таким образом, связь между линейны­ми (длина пути s, пройденного точкой по дуге окружности радиуса R, линейная ско­рость v, тангенциальное ускорение аt, нор­мальное ускорение аn) и угловыми величи­нами (угол поворота j, угловая скорость (о, угловое ускорение e) выражается сле­дующими формулами:

В случае равнопеременного движения точки по окружности (e=const)

где w0 — начальная угловая скорость.

 

Динамика материальной точки и поступательного движения твердого тела

Первый закон Ньютона. Масса. Сила

Первый закон Ньютона:всякая мате­риальная точка (тело) сохраняет состоя­ние покоя или равномерного прямолиней­ного движения до тех пор, пока… Стремление тела сохранять состояние покоя или равномерного прямолинейного… Механическое движение относительно, и его характер зависит от системы отсче­та. Первый закон Ньютона выполняется не во…

Статистический и термодинамический методы исследования.Молекулярная фи­зика и термодинамика — разделы физики, в которых изучаются макроскопические

процессыв телах, связанные с огромным числом содержащихся в телах атомов и молекул. Для исследования этих про­цессов применяют два качественно раз­личных и взаимно дополняющих друг дру­га метода: статистический (молекулярно-кинетический) и термодинамический.Пер­вый лежит в основе молекулярной физики, второй — термодинамики.

Молекулярная физикараздел физи­ки, изучающий строение и свойства ве­щества исходя из молекулярно-кинетических представлений, основывающихся на том, что все тела состоят из молекул, находящихся в непрерывном хаотическом движении.

Идея об атомном строении вещества высказана древнегреческим философом Демокритом (460—370 до н. э.). Атомисти­ка возрождается вновь лишь в XVII в. и развивается в работах М. В. Ломоно­сова, взгляды которого на строение ве­щества и тепловые явления были близки к современным. Строгое развитие молеку­лярной теории относится к середине XIX в. и связано с работами немецкого физика Р.Клаузиуса (1822—1888), ан­глийского физика Дж. Максвелла (1831 — 1879) и австрийского физика Л. Больцма­на (1844—1906).

Процессы, изучаемые молекулярной физикой, являются результатом совокуп­ного действия огромного числа молекул. Законы поведения огромного числа моле­кул, являясь статистическими закономер­ностями, изучаются с помощью статисти­ческого метода.Этот метод основан на

том, что свойства макроскопической систе­мы в конечном счете определяются свой­ствами частиц системы, особенностями их движения и усредненными значениями ди­намических характеристик этих частиц (скорости, энергии и т.д.). Например, температура тела определяется скоростью беспорядочного движения его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения мо­лекул. Нельзя говорить о температуре од­ной молекулы. Таким образом, макроско­пические характеристики тел имеют физи­ческий смысл лишь в случае большого числа молекул.

Термодинамика— раздел физики, изу­чающий общие свойства макроскопиче­ских систем, находящихся в состоянии термодинамического равновесия, и про­цессы перехода между этими состояниями. Термодинамика не рассматривает микро­процессы, которые лежат в основе этих превращений. Этим термодинамический методотличается от статистического. Термодинамика базируется на двух на­чалах — фундаментальных законах, уста­новленных в результате обобщения опыт­ных данных.

Область применения термодинамики значительно шире, чем молекулярно-кинетической теории, ибо нет таких областей физики и химии, в которых нельзя было бы пользоваться термодинамическим мето­дом. Однако, с другой стороны, термодинамический метод несколько огра­ничен: термодинамика ничего не говорит о микроскопическом строении вещества, о механизме явлений, а лишь устанавли­вает связи между макроскопическими

свойствами вещества. Молекулярно-кинетическая теория и термодинамика взаимно дополняют друг друга, образуя единое целое, но отличаясь различными методами исследования.

Термодинамика имеет дело с термоди­намической системой— совокупностью макроскопических тел, которые взаимо­действуют и обмениваются энергией как между собой, так и с другими телами (внешней средой). Основа термодинами­ческого метода — определение состояния термодинамической системы. Состояние системы задается термодинамическими параметрами (параметрами состояния) —совокупностью физических величин, ха­рактеризующих свойства термодинамиче­ской системы. Обычно в качестве парамет­ров состояния выбирают температуру, давление и удельный объем.

Температура — одно из основных по­нятий, играющих важную роль не только в термодинамике, но и в физике в целом. Температура— физическая величина, ха­рактеризующая состояние термодинами­ческого равновесия макроскопической системы. В соответствии с решением XI Генеральной конференции по мерам и весам (1960) в настоящее время можно применять только две температурные шка­лы термодинамическую и Международ­ную практическую,градуированные соот­ветственно в Кельвинах (К) и в градусах Цельсия (°С).

В Международной практической шка­летемпература замерзания и кипения во­ды при давлении 1,013•105 Па соответ­ственно 0 и 100 °С (так называемые реперные точки).

Термодинамическая температурная шкалаопределяется по одной реперной точке, в качестве которой взята тройная точка воды(температура, при которой лед, вода и насыщенный пар при давле­нии 609 Па находятся в термодинамиче­ском равновесии). Температура этой точки по термодинамической шкале равна 273,16 К, (точно). Градус Цельсия равен Кельвину. В термодинамической шкале температура замерзания воды равна 273,15 К (при том же давлении, что и в Международной практической шкале), поэтому, по определению, термодинамиче­ская температура и температура по Меж­дународной практической шкале связаны соотношением T=273,15+t. Температура T=0 называется нулем кельвин.Анализ различных процессов показывает, что 0 К недостижим, хотя приближение к нему сколь угодно близко возможно.

Удельный объем v — это объем едини­цы массы. Когда тело однородно, т. е. его плотность r=const, то v= V/m= 1/r. Так как при постоянной массе удельный объем пропорционален общему объему, то мак­роскопические свойства однородного тела можно характеризовать объемом тела.

Параметры состояния системы могут изменяться. Любое изменение в термоди­намической системе, связанное с измене­нием хотя бы одного из ее термодинамиче­ских параметров, называется термодина­мическим процессом.Макроскопическая система находится в термодинамическом равновесии,если ее состояние с течением времени не меняется (предполагается, что внешние условия рассматриваемой систе­мы при этом не изменяются).

Молекулярно-кинетическая теория идеальных газов

§ 41. Опытные законы идеального газа

В молекулярно-кинетической теории поль­зуются идеализированной моделью идеаль­ного газа,согласно которой:

1) собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;

2) между молекулами газа отсутству­ют силы взаимодействия;

3) столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

Модель идеального газа можно ис­пользовать при изучении реальных газов, так как они в условиях, близких к нор-

мальным (например, кислород и гелий), а также при низких давлениях и высоких температурах близки по своим свойствам к идеальному газу. Кроме того, внеся по­правки, учитывающие собственный объем молекул газа и действующие молекуляр­ные силы, можно перейти к теории реаль­ных газов.

Опытным путем, еще до появления молекулярно-кинетической теории, был уста­новлен целый ряд законов, описывающих поведение идеальных газов, которые мы и рассмотрим.

Закон Бойля — Мариотта: для дан­ной массы газа при постоянной температу­ре произведение давления газа на его объем есть величина постоянная:

pV = const (41.1) при Т=const, m=const.

Кривая, изображающая зависимость меж­ду величинами р и V, характеризующими свойства вещества при постоянной темпе­ратуре, называется изотермой.Изотермы представляют собой гиперболы, располо­женные на графике тем выше, чем выше температура, при которой происходит про­цесс (рис. 60).

Закон Гей-Люссака:1) объем дан­ной массы газа при постоянном давлении изменяется линейно с температурой:

V=V0(1+at) (41.2) при p = const, m = const;

2) давление данной массы газа при по­стоянном объеме изменяется линейно с температурой:

p = p0(1+at) (41.3) при V=const, m=const.

В этих уравнениях t — температура по шкале Цельсия, р0 и V0 — давление и объем при 0°С, коэффициент a=1/273,15 К-1.

Процесс,протекающий при постоян­ном давлении, называется изобарным.На диаграмме в координатах V, t (рис.61) этот процесс изображается прямой, на­зываемой изобарой. Процесс,протекаю­щий при постоянном объеме, называется изохорным.На диаграмме в координатах р, t (рис. 62) он изображается прямой, называемой изохорой.

Из (41.2) и (41.3) следует, что изо­бары и изохоры пересекают ось темпера­тур в точке t =-1/a=-273,15 °С, опре­деляемой из условия 1+at=0. Если сместить начало отсчета в эту точку, то происходит переход к шкале Кельвина (рис. 62), откуда

T=t+1/a.

Вводя в формулы (41.2) и (41.3) термодинамическую температуру, законам Гей-Люссака можно придать более удоб­ный вид:

V=V0(1+at)=V0[1+a(T-1/a)]=v0at,

p=p0(1+at)=p0 [1+a(Т-1/a)]=р0aТ, или

V1/V2 = T1/T2 (41.4)

при p = const, m = const,

р1/р2 = T1/T2 (41.5) при V=const, m=const,

где индексы 1 и 2 относятся к произволь­ным состояниям, лежащим на одной изо­баре или изохоре.

Закон Авогадро: моли любых газов при одинаковых температуре и давлении занимают одинаковые объемы. При нор­мальных условиях этот объем равен 22,41•10-3м3/моль.

По определению, в одном моле различ­ных веществ содержится одно и то же число молекул, называемое постоянной Авогадро:

nа = 6,022•1023 моль-1.

Закон Дальтона:давление смеси идеальных газов равно сумме парциаль­ных давлений входящих в нее газов, т. е.

p=p1+p2+... + pn,

где p1,p2, ..., pnпарциальные давле­ния— давления, которые оказывали бы газы смеси, если бы они одни занимали объем, равный объему смеси при той же температуре.

Уравнение Клапейрона — Менделеева

Как уже указывалось, состояние некото­рой массы газа определяется тремя тер­модинамическими параметрами: давлением р, объемом V и температурой Т.

Между этими параметрами существует определенная связь, называемая уравне­нием состояния,которое в общем виде дается выражением

f(р, V, Т)=0,

где каждая из переменных является фун­кцией двух других.

Французский физик и инженер Б. Кла­пейрон (1799—1864) вывел уравнение со­стояния идеального газа, объединив за­коны Бойля — Мариотта и Гей-Люссака. Пусть некоторая масса газа занимает объем V1, имеет давление р1 и находится при температуре Т1. Эта же масса газа в другом произвольном состоянии харак­теризуется параметрами р2, V2, Т2 (рис.63). Переход из состояния 1 в со­стояние 2 осуществляется в виде двух процессов: 1) изотермического (изотерма 11'), 2) изохорного (изохора 1'—2).

В соответствии с законами Бойля — Мариотта (41.1) и Гей-Люссака (41.5) запишем:

p1V1=p'1V2, (42.1)

p'1/p'2=T1/T2 . (42.2)

Исключив из уравнений (42.1) и (42.2) р'1, получим

p1V1/T1=p2V22 .

Так как состояния 1 и 2 были выбраны произвольно, то для данной массы газа

величина pV/T остается постоянной,

т. е.

pV/T =B=const. (42.3)

Выражение (42.3) является уравнением Клапейрона,в котором В — газовая по­стоянная, различная для разных газов.

Русский ученый Д. И. Менделеев (1834—1907) объединил уравнение Кла­пейрона с законом Авогадро, отнеся урав­нение (42.3) к одному молю, использовав молярный объем Vт. Согласно закону Авогадро, при одинаковых р и Т моли всех газов занимают одинаковый молярный объем Vm, поэтому постоянная В будет одинаковой для всех газов. Эта общая для всех газов постоянная обозначается R и называется молярной газовой посто­янной.Уравнению

pVm = RT (42.4)

удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеально­го газа,называемым также уравнением Клапейрона — Менделеева.

Числовое значение молярной газовой постоянной определим из формулы (42.4), полагая, что моль газа находится при нормальных условиях 0=1,013•105 Па, T0=273,15 K:, Vm= 22,41•10-3м3/моль): R = 8,31 Дж/(моль•К).

От уравнения (42.4) для моля газа можно перейти к уравнению Клапейро­на — Менделеева для произвольной массы газа. Если при некоторых заданных давле­ний и температуре один моль газа занимает молярный объем l/m, то при тех же условиях масса т газа займет объем V = (m/M) Vm, где М молярная масса(масса одного моля вещества). Единица молярной мас­сы — килограмм на моль (кг/моль). Урав­нение Клапейрона — Менделеева для мас­сы т газа

где v = m/M — количество вещества.

Часто пользуются несколько иной фор­мой уравнения состояния идеального газа, вводя постоянную Больцмана:

k=R/NА=1,38•10-23 Дж/К.

Исходя из этого уравнение состояния (42.4) запишем в виде

p = RT/Vm = kNAT/Vm = nkT,

где NA/Vm = n—концентрация молекул (число молекул в единице объема). Таким образом, из уравнения

p = nkT (42.6)

следует, что давление идеального газа при данной температуре прямо пропорцио­нально концентрации его молекул (или плотности газа). При одинаковых темпе­ратуре и давлении все газы содержат в единице объема одинаковое число моле­кул. Число молекул, содержащихся в 1 м3 газа при нормальных условиях, называется числом Лошмидта:

NL = P0/(kT0) = 2,68•1025 м-3.

Основное уравнение молекулярно-кинетической теории идеальных газов

Для вывода основного уравнения молеку­лярно-кинетической теории рассмотрим одноатомный идеальный газ. Предполо­жим, что молекулы газа движутся хаоти­чески, число взаимных столкновений меж­ду молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, а соударения молекул со стенками сосуда абсолютно упругие. Выделим на стенке сосуда некоторую элементарную площадку DS (рис. 64) и вычислим давле­ние, оказываемое на эту площадку. При каждом соударении молекула, движущая­ся перпендикулярно площадке, передает ей импульс m0v-(-m0v)=2m0v, где т0 — масса молекулы, v — ее скорость.

 

За время Dt площадки DS достигнут только те молекулы, которые заключены в объеме цилиндра с основанием DS и высотой vDt (рис.64). Число этих молекул равно nDSvDt (n—концентрация молекул).

Необходимо, однако, учитывать, что реально молекулы движутся к площадке

DS под разными углами и имеют различ­ные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движе­ние молекул заменяют движением вдоль трех взаимно перпендикулярных направ­лений, так что в любой момент времени вдоль каждого из них движется 1/3 моле­кул, причем половина молекул (1/6) дви­жется вдоль данного направления в одну сторону, половина — в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку DS будет 1/6nDSvDt. При столкновении с пло­щадкой эти молекулы передадут ей им­пульс

DР = 2m0v1/6nDSvDt=1/3nm0v2DSDt.

Тогда давление газа, оказываемое им на стенку сосуда,

p=DP/(DtDS)=1/3nm0v2. (43.1)

Если газ в объеме V содержит N молекул,

движущихся со скоростями v1, v2, ..., vN, то

целесообразно рассматривать среднюю квадратичную скорость

характеризующую всю совокупность моле­кул газа.

Уравнение (43.1) с учетом (43.2) при­мет вид

р = 1/3пт0 <vкв>2. (43.3)

Выражение (43.3) называется основ­ным уравнением молекулярно-кинетической теории идеальных газов.Точный рас­чет с учетом движения молекул по все-

возможным направлениям дает ту же формулу.

Учитывая, что n = N/V, получим

где Е — суммарная кинетическая энергия поступательного движения всех молекул газа.

Так как масса газа m =Nm0, то урав­нение (43.4) можно переписать в виде

pV=1/3m<vкв>2.

Для одного моля газа т = М (М — моляр­ная масса), поэтому

pVm=1/3M<vкв>2,

где Vm — молярный объем. С другой сто­роны, по уравнению Клапейрона — Мен­делеева, pVm=RT. Таким образом,

RT=1/3М <vкв>2, откуда

Так как М = m0NA, где m0—масса од­ной молекулы, а NА — постоянная Авогад­ро, то из уравнения (43.6) следует, что

где k = R/NA—постоянная Больцмана. Отсюда найдем, что при комнатной темпе­ратуре молекулы кислорода имеют сред­нюю квадратичную скорость 480 м/с, во­дорода — 1900 м/с. При температуре жид­кого гелия те же скорости будут соответ­ственно 40 и 160 м/с.

Средняя кинетическая энергия посту­пательного движения одной молекулы иде­ального газа

<e0) =E/N = m0 <vкв>)2/2 = 3/2kT(43.8)

(использовали формулы (43.5) и (43.7)) пропорциональна термодинамической тем­пературе и зависит только от нее. Из этого уравнения следует, что при T=0 <e0> =0,,т. е. при 0 К прекращается поступательное движение молекул газа, а следовательно, его давление равно нулю. Таким образом, термодинамическая температура является мерой средней кинетической энергии по­ступательного движения молекул идеаль­ного газа и формула (43.8) раскрывает молекулярно-кинетическое толкование температуры.

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения

По молекулярно-кинетической теории, как бы ни изменялись скорости молекул при столкновениях, средняя квадратичная скорость молекул массой m0 в газе,… При выводе закона распределения мо­лекул по скоростям Максвелл предпола­гал,… Закон Максвелла описывается некото­рой функцией f(v), называемой функцией распределения молекул по скоростям.Ес­ли…

– Конец работы –

Используемые теги: движении, материальной, точки, координаты, течением, времени, изменяют, общем, случае, движение, определя, ется, скалярными, уравнениями0.174

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: При движении материальной точки ее координаты с течением времени изменяют­ся. В общем случае ее движение определя­ется скалярными уравнениями

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Основные характеристики движения материальной точки: траектория движения, перемещение точки, пройденный ею путь, координаты, скорость и ускорение
Фи зика область естествознания Наука изучающая наиболее общие и фундаментальные закономерности определяющие структуру и эволюцию... Мате рия объективная реальность... Все вещества состоят из отдельных мельчайших частиц молекул и атомов...

Кинематика точки, сложное движение точки, движение точки вокруг неподвижной оси
Порядок Рассмотреть относительное движение точки и определить относительную скорость 2. Рассмотреть переносное вращение и определить переносную…

Механическое движение. Система отсчета. Материальная точка. Абсолютно твердое тело. Границы применимости классической механики
Механическое движение Система отсчета Материальная точка Абсолютно твердое...

Лекция 5: Динамика вращательного движения 1. Момент инерции материальной точки
План... Момент инерции материальной точки Момент инерции системы материальных точек Теорема Штейнера...

Лекция 5.Кинематика точки. Кинематика изучает движение с внешней стороны
Лекция Кинематика точки... Кинематика изучает движение с внешней стороны рассматривая лишь его геометрические свойства и временные...

Определение скорости и ускорения точки по заданным уравнениям ее движения
На сайте allrefs.net читайте: "Определение скорости и ускорения точки по заданным уравнениям ее движения"

Механика – это раздел физики, изучающий закономерности механического движения и причины, вызывающие или изменяющие это движение
ВВЕДЕНИЕ... Механика это раздел физики изучающий закономерности механического движения... Выполнение лабораторных работ по механике способствует развитию у студентов навыков самостоятельной работы и помогает...

КООРДИНАТЫ ТОЧКИ
На сайте allrefs.net читайте: КООРДИНАТЫ ТОЧКИ.

Каким видит Лермонтов героя своего времени в романе "Герой нашего времени".
Так как главный герой этогоромана родился и вырос среди этого поколения ,То он, конечно, обладает такиминравственным качествами, как эти Печорин -… Белинский Печорин не может найти настоящую цель вжизни, так как его искания… Но в отличие от Онегина, примирившегося со своей жизнью, Печоринищетопасности, стремится к активной жизни и глубоко…

Перемещение можно задать не только по горизонтали, но и вертикали, в этом случае указываются размеры области, в которой будет происходить движение
БЕГУЩАЯ СТРОКА... Тег lt marquee gt lt marquee gt создает бегущую строку на странице...

0.029
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам